What to do if Assumptions are Violated?

- Abandon simple linear regression for something else (usually more complicated).
- Some examples of alternative models:
 - weighted least square – appropriate model if the variance is non-constant.
 - robust regression – appropriate when residuals have heavy tails or there are outliers.
 - methods that allow distribution other than normal.
 - time series model – appropriate when residuals are correlated.
Dealing with Outliers / Influential points

- First, check for clerical / measurement error.
- Consider transformation if the points come from a skewed distribution.
- Use robust regression which downplays role of extreme observations.
- Consider reporting results with and without the outliers.
- Think about whether an outlier is beyond the region where linear model holds; then fit the model on restricted rage of the independent variable.
- For gross outliers that are probably mistakes, consider deleting them but be cautious if there is no evidence of mistake.
Transformations

- Transformations are used as a remedy for non-linearity, non-constant variance and non-normality.
- If relationship is non-linear but variance of Y is approximately constant over X, try to find a transformation of X that results in a linear relationship.
- Most common monotonic transformations are: $X^2, \log X, \sqrt{X}$
- If curvature is non-monotonic then need a polynomial. This is done via multiple regression.
- If the variance is non-constant, transform Y.
More on Transformations

• Very often we need to transform both X and Y. But…

• Transforming X doesn’t change the distribution of the data about the regression line. It is equivalent to slicing the scatterplot into vertical slices and changing the spacing of the slices.

• Transforming Y not only changes the shape of the regression line but alter the relative vertical spacing of the observations.

• So transform Y first to achieve constant variance and then transform X to make relationship linear.
Transformation to Stabilize the Variance

• If Y has a distribution with mean μ and variance σ_Y^2. Then the mean and variance of $Z = f(Y)$ are approximately,

$$E(Z) \approx f(\mu)$$

$$Var(Z) \approx \sigma_Y^2 \{f'(\mu)\}^2$$

• Proof:

• This result gets used to derive variance stabilizing transformations.
Examples
SAS Example

• In an industrial laboratory, under uniform conditions, batches of electrical insulating fluid were subjected to constant voltages until the insulating property of the fluids broke down. Seven different voltage levels, space 2 kV apart from 26 to 38 kV, were studied.

• The measured responses were the times, in minutes, until breakdown.
Interpreting log-transformed Data

- If $\log Y = \beta_0 + \beta_1 X + \varepsilon$ then, $Y = e^{\beta_0} e^{\beta_1 X} e^\varepsilon$.

- The errors are multiplicative.

- Increase in X of 1 unit is associated with a multiplicative change in Y by a factor of e^{β_1}.

- Example:

 - If $Y = \beta_0 + \beta_1 \log X + \varepsilon$, for each k-fold change in X, Y changes by $\beta_1 \log k$.

 - Example: if X is cut in half, Y changes, on average by $\beta_1 \log(\frac{1}{2})$.

week 7
Violation of Normality of ε’s

• By the Central Limit Theorem, linear combinations of random variables are approximately normally distributed, no matter what their original distribution is.

• So CIs and tests for β_0, β_1, and $E(Y)$ are robust (i.e., have approximately the correct coverage or approximately the correct P-value) against departures from normality as long as departures aren’t too extreme (outliers, skew).

• Prediction Intervals are not robust against departure from Normality because they are for one point.
Relative Importance of Assumptions

• The most important assumption is independence of observations. There is no way around this with teachings from this course.

• The second important assumption is the constant variance. Deviations from equal variance are OK if there is an equal number of observations at each value of X.

• The least important assumption is Normality of the residuals, because of the CLT. It is, however, a necessary assumption for PI’s.
More on Residuals

• For all residual plots we use the raw residuals e_i as they are on the same scale as the response variable.

• We can also use semi-studentized residuals which are defined as

$$e_i^* = \frac{e_i}{\sqrt{MSE}}$$

It is called “semi” because the MSE is an estimate of $\text{Var}(\varepsilon_i)$ not $\text{Var}(e_i)$.

• The semi-studentized residuals are useful for judging outliers; a point that is more than 3 S.D away from its mean is considered an outliers, i.e., if $|e_i^*| > 3$.
Joint Estimation of β_0 and β_1

- A 95% CI for β_0 capture the true value in 95% of possible samples.
- A 95% CI for β_1 capture the true value in 95% of possible samples.
- But, the probability that both confidence intervals capture their true value is less than 0.95.
- If we want to be 95% confident that both CIs capture their respective parameter, we can use a Bonferroni correction…

- In general, for simultaneous CIs for any k parameters, the overall confidence level will be at least $100(1-\alpha)\%$ if the CI for each parameter is a $100(1-\alpha/k)\%$ CI.
- These are called “joint” CIs, “simultaneous” CIs or “family” of CIs.
Simultaneous Estimation of the Mean Response

• We want to estimate CIs for the mean response $E(Y)$ at more than one value of X simultaneously.

• But the construction of CI is such that 95% of repetitions of sampling process result in intervals that include the correct mean response for that X_h.

• If different 95% CIs are constructed for the mean response at more than one value of X, the proportion of repetitions in which the intervals include the true mean is less than 95%.

• Again, we can correct for this by using Bonferroni correction; if we want simultaneous CI for k values of X, construct each CI at $100(1-\alpha/k)\%$.

• Alternatively, we can use the boundary values of the confidence band at selected X obtained from the Working-Hotelling procedure as simultaneous estimates of the mean response at this X.

• Both of these procedures are conservative, i.e., the overall confidence level would actually be higher than $100(1-\alpha)\%$.
Inverse Prediction

- Sometimes, a regression model of Y on X is used to make prediction of the value of X which gave rise to a new observation Y.
- This is known as an inverse prediction.
- We illustrate it with by an example (snow gauge)…