Bootstrap Confidence Intervals

Start with a sample, x, in C1: 26.8, 31.0, 36.1, 29.4, 30.5, 26.6, 33.5, 29.4, 27.2, 30.6

Create 4000 bootstrap samples from this distribution, x*1, x*2, …, x*4000

- Begin by putting all 4000 samples (40000 observations) into C2

 Calculate → Random data → Sample from columns → Complete the dialogue → OK

- Add observation numbers 1,2,…..10, 1,2, ….10, …. in C3

 Calculate → Make pattered data → simple set of numbers → Complete the dialogue → OK

- Split C2 into 4000 bootstrap samples, x*1, x*2, …, x*4000. Each sample will be in a row, the column headings will be the observation numbers within each sample. the samples will be in rows in C4 to C13.

 Data → Unstack columns → Complete the dialogue → OK

- Calculate the 4000 bootstrap sample means. Put the sample means in C14.

 Calculate → Row statistics → Complete the dialogue → OK

- Calculate the 4000 bootstrap sample medians. Put the sample medians in C15.

 Calculate → Row statistics → Complete the dialogue → OK

- Calculate the 4000 bootstrap sample standard deviations. Put the sample stand deviations in C16. Calculate → Row statistics → Complete the dialogue → OK

Summary Statistics for the 3 bootstrap distributions

<table>
<thead>
<tr>
<th>Descriptive Statistics: means, medians, st.devs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>means</td>
</tr>
<tr>
<td>medians</td>
</tr>
<tr>
<td>st.devs</td>
</tr>
</tbody>
</table>
Finding the p^{th} Sample Percentile.

- Calculate $\frac{p(n + 1)}{100}$

- Put the sample in order

- If $\frac{p(n + 1)}{100}$ is an integer, then the p^{th} sample percentile is observation $\frac{p(n + 1)}{100}$

- If $\frac{p(n + 1)}{100}$ is not an integer, then round $\frac{p(n + 1)}{100}$ up and down to the nearest integers, and the p^{th} sample percentile is the average of the observation $\frac{p(n + 1)}{100}$ rounded-up and observation $\frac{p(n + 1)}{100}$ rounded-down
Using Minitab to Order the $\hat{\theta}_1^*, \hat{\theta}_2^*, \ldots, \hat{\theta}_B^*$ Values

Calc \rightarrow Calculator \rightarrow Complete the dialogue box \rightarrow OK

The ordered sample means are in C17, the ordered sample medians are in C18 and the ordered sample standard deviations are in C19

95% Confidence Intervals

- For the 2.5th sample percentile observations #100 and #101
 \[\frac{p(n + 1)}{100} = \frac{2.5(4001)}{100} = 100.025 \rightarrow \text{average} \]

- For the 97.5th sample percentile observations #3900 and #3901
 \[\frac{p(n + 1)}{100} = \frac{97.5(4001)}{100} = 3900.975 \rightarrow \text{average} \]
95% Confidence Interval for the Mean

Use Minitab to Find Observations #100, #101, #3900, and #3901

Editor → check “enable commands” → the Minitab prompt, MTB >, will appear in the session window

```
MTB > let k1=c17(100)
MTB > let k2=c17(101)
MTB > let k3=c17(3900)
MTB > let k4=c17(3901)
MTB > prin k1 k2 k3 k4
```

Data Display

<table>
<thead>
<tr>
<th>K1</th>
<th>28.4400</th>
</tr>
</thead>
<tbody>
<tr>
<td>K2</td>
<td>28.4500</td>
</tr>
<tr>
<td>K3</td>
<td>31.9500</td>
</tr>
<tr>
<td>K4</td>
<td>31.9800</td>
</tr>
</tbody>
</table>

The 2.5th sample percentile is 28.445 and the 97.5th sample percentile is 31.965

A bootstrap 95% confidence interval for the mean is \(\left(\hat{\theta}^*_{.025}, \hat{\theta}^*_{.975} \right) = (28.445, 31.965) \)

Another 95% confidence interval for the mean is \(\left(2\hat{\theta}^* - \hat{\theta}^*_{.975}, 2\hat{\theta}^* - \hat{\theta}^*_{.025} \right) = (28.253, 31.773) \)

95% Confidence Interval for the Median

```
MTB > let k1=c18(100)
MTB > let k2=c18(101)
MTB > let k3=c18(3900)
MTB > let k4=c18(3901)
MTB > print k1 k2 k3 k4
```

Data Display

<table>
<thead>
<tr>
<th>K1</th>
<th>27.2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>K2</td>
<td>27.2000</td>
</tr>
<tr>
<td>K3</td>
<td>32.0500</td>
</tr>
<tr>
<td>K4</td>
<td>32.0500</td>
</tr>
</tbody>
</table>

A bootstrap 95% confidence interval for the median is \(\left(\hat{\theta}^*_{.025}, \hat{\theta}^*_{.975} \right) = (27.200, 32.050) \)
95% Confidence Interval for the Standard Deviation

MTB > let k1=c19(100)
MTB > let k2=c19(101)
MTB > let k3=c19(3900)
MTB > let k4=c19(3901)
MTB > print k1 k2 k3 k4

Data Display

\begin{tabular}{|l|l|}
\hline
K1 & 1.56048 \\
K2 & 1.56493 \\
K3 & 3.93645 \\
K4 & 3.93667 \\
\hline
\end{tabular}

A bootstrap 95% confidence interval for the median is \(\left(\hat{\theta}_{0.025}, \hat{\theta}_{0.975} \right) = (1.562705, 3.93656) \)

Remember to uncheck “enable commands” in the editor menu