How does Θ affect model?

Statistical Model
Data

Change Θ to $\Theta + d\Theta$
Probability is moved!

Contiuity: use it

$\text{Peter McCullagh Parameter?}$
How does Θ affect model?

Statistical Model

Data

Change Θ to $\Theta + d\Theta$

Probability is moved!

Distribution shifts; How much?

Stochastically inc. say
How does Θ affect model?

Statistical Model
Data

Change Θ to $\Theta + d\Theta$
Probability is moved!

Distribution shifts; How much?

$p = F(y; \Theta)$

Find $y + dy$ having prob p to left!

$p = F(y + dy; \Theta + d\Theta) \rightarrow$

Solve for effect "dy"

What happens to that "unit mass of stuff"?
How does Θ affect model?

Statistical Model
Data

Change Θ to $\Theta + d\Theta$
Probability is moved!

Distribution shifts; How much?

$$p = F(y; \Theta)$$

Find $y + dy$, having prob p to left!

$$p = F(y + dy; \Theta + d\Theta)$$

Solve for effect "dy"

Take total differential:

$$\theta = \frac{\partial F}{\partial y} dy + \frac{\partial F}{\partial \Theta} d\Theta = F_y(y; \Theta) dy + F_\Theta(y; \Theta) d\Theta$$
How does Θ affect model?

Statistical Model

Data

Change Θ to $\Theta + d\Theta$

Probability is moved!

Distribution shifts; How much?

$p = F(y; \Theta)$

Find $y + dy$, having prob p to left!

$p = F(y + dy; \Theta + d\Theta)$

Solve for effect "dy"

Take total differential:

$$\theta = \frac{\partial F}{\partial y} dy + \frac{\partial F}{\partial \Theta} d\Theta = F_y(y; \Theta) dy + F_{\Theta}(y; \Theta) d\Theta$$

Shift caused by $\Theta \rightarrow \Theta + d\Theta$

$$dy = -\frac{F_{\Theta}(y; \Theta)}{F_y(x; \Theta)} d\Theta$$
Another "Take"

use quantile function

\[p = F(y; \Theta) \]

Solve for \(y \) as function of \(\Theta \) \& \(p \)

Let's look the other way!
Another "Take"

Use quantile function

\[p = F(y; \theta) \]

Solve for \(y \) as function of \(\theta \)? \(p \) or \(\theta \)? Let's look the other way!

\[qf \quad y = F^{-1}(p; \theta) = y(p; \theta) \]
Another "Take"

Use quantile function

\[p = F(y; \theta) \]

Solve for \(y \) as function of \(\theta \) & \(p \)

Let's look the other way!

\[y = F^{-1}(p; \theta) = y(p; \theta) \]

Same "information"

Read in reverse order

\(p \leftrightarrow q \) or \(q \leftrightarrow p \)
Another "Take"

Use quantile function

\[p = F(y; \theta) \]

Solve for \(y \) as function of \(\theta \) \(\Rightarrow p \)

Let's look the other way!

\[q = F^{-1}(p; \theta) = y(p; \theta) \]

Same information

Read in reverse order

\[p \leftrightarrow q \text{ or } q \leftrightarrow p \]

How does \(\theta \) affect \(y \)?
Another "Take"

use quantile function

\[p = F(y; \theta) \]

Solve for \(y \) as function of \(\theta \)? \(p \)
Le look the other way!

\[q = F^{-1}(p; \theta) = y(p; \theta) \]

\[\text{Same information} \]
Read in reverse order
\(p \leftrightarrow q \) or \(q \leftrightarrow p \)

How does \(\theta \) affect \(y \)?

\[\frac{dy}{d\theta} = \frac{\partial y(p; \theta)}{\partial \theta} \]

Easy: Differentiate quantile fn.
How does Θ affect model?

Statistical Model
Data

Change Θ to $\Theta + d\Theta$
Probability is moved!
How does Θ affect model?

Statistical Model

Data

Change Θ to $\Theta + d\Theta$

Probability is moved!

Slide 5

$dy = - \frac{F_{\Theta}(y; \Theta)}{F_y(x; \Theta)} d\Theta$

Slide 10

$dy = \frac{dy(p; \Theta)}{\partial \Theta} d\Theta$
How does Θ affect model?

Statistical Model

Data

Change Θ to $\Theta + d\Theta$

Probability is moved!

Slide 5

$$dy = - \frac{F_{\Theta}(y; \Theta)}{F_{\Theta}(x; \Theta)} d\Theta$$

Slide 10

$$dy = \frac{dy(p; \Theta)}{d\Theta} d\Theta$$

$F(y; \Theta)$ fixed = p say

Differentiate via total derivative
How does θ affect model?

Statistical Model

Data

Change θ to $\theta + d\theta$

Probability is moved!

Slide 5

$$dy = -\frac{F_{y \theta}(y; \theta)}{F_y(x; \theta)} d\theta$$

Slide 10

$$dy = \frac{d y(p; \theta)}{d \theta} d\theta$$

$F(y; \theta)$ fixed = p say

Differentiate via total derivative

For fixed p write y as fn of Θ; then differentiate
How does Θ affect model?

Statistical Model

Data

Change Θ to $\Theta + d\Theta$

Probability is moved!

Slide 5

\[dy = - \frac{\partial_y(y; \theta)}{F_y(x; \theta)} d\theta \]

Slide 10

\[dy = \frac{d_y(p; \theta)}{d\theta} d\theta \]

Same result!

Two calculus roots to $n(\theta) = \frac{dy}{d\theta}$

How Θ moves data!

Velocity re Θ
Works generally:

Model: $f(y; \theta)$

Data: y^0

dim $y = n$

dim $\theta = p$ \quad \Rightarrow \quad \text{Regularity Asymptotics Continuity} \quad \text{for } n \geq p
Works generally:
Model: \(f(y; \theta) \)
Data: \(y^0 \)

\(df \rightarrow gf \)
Use quantile fn

\(\dim y = n \)
\(\dim \theta = p \)

Regularity
Continuity

\(y = y(p; \theta) \)
\(\sim \sim \sim \sim \) Vector p value
Works generally:
Model: \(f(y; \theta) \)
Data: \(y_0 \)

1) df \(\rightarrow \) qf
Use quantile fn

2) Differentiate

\[
\frac{\partial y}{\partial \theta} = \left\{ \frac{\partial y_i}{\partial \theta_j} \right\} = V(\theta) = (v_1(\theta), \ldots, v_p(\theta)) \quad p \text{ col vectors in } \mathbb{R}^n
\]

\(V(\theta) \) is the Information Matrix

Regularity
Continuity
Change in \(\theta \) and its effect on model, on data point...

Indep coords Vectors \(\theta \)
Dep. coord \(\cdots \) Q's \(\cdots \) /8
Works generally:

Model: \(f(y; \theta) \)

Data: \(y^0 \)

\(\dim y = n \)

\(\dim \theta = p \)

Regularity

Continuity

1) \(df \rightarrow qf \)

Use quantile fn

2) Differentiate

\[\frac{\partial y}{\partial \theta} = \left\{ \frac{\partial y_i}{\partial \theta} \right\} = V(\theta) = (v_1(\theta), \ldots, v_p(\theta)) \]

\[n \times p \]

3) Get: \[dy = V(\theta) d\theta \] what can you do?
Works generally:

Model: \(f(y; \theta) \)

Data: \(y^0 \)

1) \(df \to qf \)
 Use quantile fn

2) Differentiate
 \[\frac{\partial y}{\partial \theta} = \begin{pmatrix} \frac{\partial y_1}{\partial \theta} \\ \vdots \\ \frac{\partial y_n}{\partial \theta} \end{pmatrix} = V(\theta) = (v_1(\theta), \ldots, v_p(\theta)) \]
 \[n \times p \]

3) Get:
 \[dy = V(\theta) d\theta \]
 \(\begin{cases} \text{Change } \hat{\theta} \to \hat{\theta} + d\theta \\ \text{Probability flows} \\ \text{Contours ancillary} \end{cases} \)

 a) At \(\theta = \hat{\theta} \)
 \[dy = V(\hat{\theta}) d\theta = V d\theta \]
Works generally:

Model: $f(y; \theta)$

Data: y^0

$\dim y = n$

$\dim \theta = p$

Regularity

Continuity

1) $df \rightarrow qf$

Use quantile fn

2) Differentiate

$$\frac{\partial y_i}{\partial \theta_j} = \{ \frac{\partial y_i}{\partial \theta_j} \} = V(\theta) = (v_1(\theta), \ldots, v_p(\theta))$$

$n \times p$

3) Get:

$$dy = V(\theta) d\theta$$

a) At $\theta = \hat{\theta}^0$

$$dy = V(\hat{\theta}^0) d\theta = V d\theta$$

Probability flows

Contours and auxiliary

b) At θ

$$|dy| = |V(\theta)| d\theta = \sqrt{V'(\theta)V(\theta)}^{1/2} d\theta$$

$V(\theta)$ default prior

for Bayes

2nd

a) FRM Y \rightarrow JRSSB 2010 631-654

b) FFS \rightarrow Bernoulli 2010 1208-1223
a) \[f(y, \theta) \quad y^0 \quad y = y(\theta; \beta) \]
\[
\text{dy} = V(\hat{\theta}) \text{d}\theta = V \text{d}\theta
\]
at \(y^0 \)

There is a 2nd order Ancillary ty+ to \(L(V) \)

Easiest part is \(V \)

Regress \(y = X\beta + \epsilon \)

Quantize \(\epsilon \)

Drop if \(y \) is centered on \(m \) points \(L(X) \)

Do you need ancillary

Auxiliary

Usually \(N \)

Change \(\theta \) to \(\hat{\theta} \)

Prob 'moves'

1st Deriv A

Ancillary

(2nd order A)

Theory

Bunsell Paper

Diff geom; discover Flow

Frobenius

Vector fields

(Diff Q)

Frob to 2nd order

Ancillary
1) There is a P-dimensional version (conditional on data info) at data y^0.

2) For $H_0: \phi$ only need $\frac{\partial l(\theta; y)}{\partial \theta} \bigg|_{y^0} = \phi(\theta)$.

Thus: From y^0, get $V = \frac{\partial y}{\partial \theta} \big|_{Data}$; calc $\phi(\theta)$.

Act as if $f(y; \theta) = \text{exponential } \phi(\theta)$.

Data $\Delta = 0$

$$f = \frac{1}{(2\pi)^k} \exp \left\{ l(\theta) + \phi(\theta) \mathbb{S} \right\} \int_{\phi} \mathbf{e}^{-\frac{1}{2} \mathbf{S} \phi} d\phi^0 \Delta = 0$$
Ex

\[u_i = X \beta + \varepsilon_i \]

\[z_i \sim f_i(z_i) \] may Logistic

Options

- LS & Bootstrap
- MLE & Bootstrap
- Default \(\frac{d\beta}{d\varepsilon} \) & MCMC

24
Ex: Expe Can Link GLM

\[y = X\beta + \sigma z \]

\[z_i \sim f_i(z_i) \] Ray Logistic

\[\frac{dy}{d\theta} = \left(\frac{x_{i1} \cdots x_{ip}}{\sqrt{n}}\right) \]

\[y^0 = X\beta + \sigma z \]

\[z = \frac{y^0 - X\beta}{\sigma} = z(\theta) \]

\[\theta^0 = \hat{\beta}^0 \]

\[V(\theta^0) = V \] \(p \)-value

\[V(\theta) \] default

\[\text{Default} = V(\theta) \frac{d\beta d\sigma}{\sigma} = \frac{d\beta d\sigma}{\sigma} \] - Jeffreys (modified)

- Right indep.

General error \[\text{Def} \frac{d\beta d\sigma}{\sigma} \]
What can it do? Theory Continuity
Initial model => Approx model ... "Easy" to analyze

\[y^* = X\beta + \sigma z \] BC
\[y = \sqrt{X(\beta + \sigma^2)} \] Explicit model

\[\text{Parameter } \lambda ? \]

Default prior: What parameters OK / Bad

UMPumb \to \] Issues
UMPsim \to \]
Q1: Box Cox
Q2: UMPS UMPU UMPS
Q3: p-vector
Q4 Discrete?

Can you go beyond $O(n^{-1/2})$? How general? How to get quantile?

- Davidson & Reid: Score
 - $\frac{d\mu}{\mu} \Rightarrow \frac{dEV}{d\theta}$

- Likelihood
 - Vector

Theory 3×3: 2nd \Rightarrow Expected model while strong

Taylor Series expansions

Welch Pears ()
Q: Model Regularity => Why/How go to Explo?

Why Explo Target:
- Welch Peers (scalar \(\theta \)) \(\Rightarrow \) Use Jeffreys.
- \(\text{Explo model} \Rightarrow 3\text{rd order Conf.} \)

Explo model \(\Rightarrow 3\text{rd order} \)

At \(y_0 \) \(\Rightarrow \) p-value at \(y_0 \)

\[
\begin{array}{c|c|c|c|c}
\theta & y & y^{2/3} & y^{1/3} & y^{1/2} \\
\hline
0 & 1 & \cdot & \cdot & \cdot \\
1 & 0 & \cdot & \cdot & \cdot \\
-1 & 0 & \cdot & \cdot & \cdot \\
\hline
\end{array}
\]

\(\phi(\theta) \)

Expand at \(y_0 \) at \(\theta_0 \)

Rescale

\(F(y_0; \theta) = 0.5 \)

3rd