Likelihood Overview

Context: Model \(f(y; \theta) \): Regular Asymptotic

Data \(y^0 \)

Explore: Least squares or other \(\Rightarrow \frac{\text{variable} - E}{\text{SD}} \) or Bootstrap

Confirm: \(p\)-values (\(s\)-values) \(19/20 \) Accuracy

Primaliue: \(L(\theta) = C(f(y^0; \theta)) \) Need/want more?

Derivative: \(p\)-value (where data is re possible true \(\theta \))

\(s\)-value (where true is re examined \(\theta \))

Sometimes ... same curve flipped
Likelihood: Prob at y^* under Θ; logs

$$p(y^*)$$

$\hat{\Theta}$

$\log = -l_{\Theta}(\hat{\Theta})$

$\frac{n^2}{2} = \hat{\Theta} - l(\Theta)$

$n = \pm \sqrt{2(\hat{\Theta} - l)}$

$q = \frac{1}{2}(\Theta - \hat{\Theta})$

$l_{\Theta}(\hat{\Theta})$? Score

Compute for any Θ

Consider as fn of Θ... for theory

Data \leftrightarrow

Distn \leftrightarrow

Pvots?
Likelihood: Vector Θ Prob at y^o under Θ; logs

$$l(\Theta; y^o)$$

$\hat{\Theta}$

$\Sigma\Theta$

$r^2/2$ Scalars

$r \ ? \ \mathcal{N}$??

$$q = (\hat{\psi} \cdot \hat{\psi}) (\hat{\psi} - \hat{\psi})$$

$\theta(\theta) \ ?$

With data: Compute ... above; more?

Variable y: Distns for $\hat{\Theta}$, ...

Behaviour under sampling from "Θ" at that Θ? At other Θ values
Have $L(\theta)$ or $p(\theta)$: What to do?

a) $\int_{\theta}^{\infty} L(\theta) \pi(\theta) \, d\theta = \Delta(\theta)$

$\pi(\theta) =$?

Does it matter? 1st 2nd

$\hat{\psi}(\theta) > \psi^*$?

$\pi(\theta)$ - descriptive?

"What if?" Mathematical Interpret

b) $\int_{-\infty}^{y^*} f(y; \theta) \, dy = p(\theta)$

"How to decide where $y^* \text{ is re } \theta$?"

How to calculate? How to approximate?

Integrate - On sample space

- On parameter space

Sanctions

Merits
Case $f(y - \theta)$

B\(|\)

\(a)\ \pi(\theta) = c\)

\(s(\theta) = \int_{\theta}^{\infty} f(y - \theta) \, d\theta\)

\(p(\theta) = \int_{y}^{\infty} f(y - \theta) \, dy\)

\| Equal

Two ways of looking at "it":

a) Choice of \(\pi(\theta)\) ? - Descriptive
- Mathematical
- Subjective

b) "Where is your \(y\) re \(\theta(\theta)\)?"

Does anything say: Priors frequentist calculations

... should be combined?
... can be combined!
... or left separate?
Approximations: For distributions... Since CLT; since 1963
for models... Barnardoff-Nielsen?

Ex's
\[\frac{\bar{y} - \mu}{\sigma_\bar{y}/\sqrt{n}} \] of \(N(0,1) \) / Student(\(n-1 \)) \[O(n^{-1/2}) \] approx CLT
\[\sqrt{n}(\hat{\theta} - \theta) \] of \(N(0,1) \) Fisher
\[r(\theta; y) \] B-N
\[\int_{-\infty}^{\infty} L(\theta; y) \pi(\theta) d\theta \] \[O(n^{-1/2}) \] \(\pi(\theta) \) – subjective

Use of \(L(\theta) \) in non-Bayes ways

Are there better approximations?
1. \(f(y) \)

2. \(\log f(y) \approx O(n) \)

3. \(z = y - \hat{y} \frac{1}{Cn^{-\frac{1}{2}}} \)

4. Graph of \(\log f(z) \) vs. \(z \)

5. \(f(z) = e^{-z^2} \{ 1 + a_3 \frac{z^3}{6n^{\frac{3}{2}}} + a_4 \frac{z^4}{24n^2} + \frac{1}{2} \left(\frac{a_3^2 z^2}{\sqrt{6n^3}} \right) + O(n^{-\frac{3}{2}}) \} \)

- Work in moderate deviations
 - Conditions: Bounding \(f(z) \) outside moderate deviations
 - Use approximations models
 - Forget sufficiency etc.
Approximations (pain var:) Who cares? "Data accretion"
Unique max "Diffuse"

Laplace: Asymptotics: \(f(y) = \pi(\theta_1 =) \Rightarrow \log[\ldots] \sim O(n) \) staged dep

\[y \sim \frac{n^{-1}}{n^{-3/2}} \]
\[y \sim \frac{n^{-1}}{n^{-3/2}} \]

\[\int e^{-j y^2/2} d\theta = \frac{(2\pi)^{p/2}}{1j^{1/2}} \]

\[\int_0^\infty f(y) dy = f(\hat{y}) \cdot \frac{(2\pi)^{p/2}}{1j^{1/2}} \left(1 + \frac{c}{n}\right) = f(\hat{y}) e^{-c/n} \]

Normal fit

Powerful (…far beyond appearances!)
Eliminate nuisance parameters in "f" analysis
Give marginal probs in Bayes calculations
Mathematical parameter … doesn't matter!

In Bayes… mostly

- Bédard & F&W
- Stat Sc 2008
- BKA 2008
- #210 AFW CSS 2005
- #209 CFMDRY 1998
- Taylor
- F & Rousseau
- JSP 1998
- Web page
Approximations (palm var:)

1. Laplace: \(f(y) \approx \) asy \(\pi(\theta = 0) \) asymptotic \(\log f(y) \sim O(n) \)
 - \(y \) staged dep
 - Unique max
 - "Diffuse"

 \[\int e^{-j y^{3/2}} \, d\theta = \frac{(2\pi)^{p/2}}{1/j^{1/2}} \]

 Normal fit \(\hat{y} \)

 \[
 \int_{-\infty}^{\infty} f(y) \, dy = f(\hat{y}) \cdot \frac{(2\pi)^{p/2}}{1/j^{1/2}} \left(1 + \frac{c}{n}\right) = f(\hat{y}) \cdot \frac{c/n}{1/j^{1/2}}
 \]

 Powerful (far beyond appearances!)

- Eliminate nuisance parameters in "f" analysis
- Give marginal probs in Bayes calculations
- Mathematical parameter -- doesn't matter!

\(O(n^{-2}) \)

Bedard & F&W
Stat Sc 2008
F & Rousseau
Bka 2008
2. Saddlepoint (pdim var; pdim para) \[f(y; \theta) \text{ Exponential; asymptotic} \]

\[f = e^{\phi} \sum_{\alpha} e^{-\phi \alpha} \int h(s) \, ds \]

\[f(s; \phi) \, ds = e^{k/n} \cdot e^{-\frac{k^2}{2}} \cdot \frac{|\int \phi \, ds|^{1/2}}{(2\pi)^{p/2}} \]

1. Only need at single \[\phi \]

\[a) - \frac{n}{2} = t(\phi; s) - t(\hat{\phi}; s) \]

This exactly adjusts for other \[\phi \] values

b) \[\phi = \phi \quad n^2 = 0 \quad \text{at center} \]

2. Change of variable

\[\frac{d\phi}{ds} = \int \phi \, ds \]

3. Parameterization in variance

\[2nd = \int \phi \, ds \]

There is a local parameterization

4. From Laplace

Scalar \[\int_{\phi} \, ds \]

\[\phi \text{ dip } \int_{\phi} \, ds \]
\[f(y; \theta) \, dy = e^{k/n} \frac{e^{-n^2/2}}{(2\pi)^{p/2}} \int_{|\theta|}^{1/2} d\theta \]

\[\phi(\theta) = \frac{1}{\theta} \frac{\partial}{\partial \theta} l(\theta; y) \]

Then just Laplace/SP
Parrondo-Nielsen's p^*

$$f(y; \theta) = e^{\frac{k/n}{2} - \frac{y^2}{2(2\pi)^{p/2}}}$$

Proof only at $\hat{\theta} = \hat{\theta}$, $y = \hat{y}$

(2) Use explicit parameter $\varphi(\theta) = \frac{1}{y} \ell(\theta; y)$

Then just Laplace/SP

Laplace: SP Version

$$\varphi(\theta; y) = \frac{\partial}{\partial y} \ell(\theta; y)$$

Same dimension

as above

$\hat{\theta} = \hat{\theta}$

$\varphi(\theta; y) = \varphi(\theta; \hat{\theta})$

BN 1986

BN Magic formula

1) 1986 paper.

pdf for mle $\hat{\theta}$

Regularity

$R^n \rightarrow R^n \rightarrow R$

C: Assumed
4) Tangent Exponential and SP

- Laplace
- SP
- p^*

Integrate an arbitrary d.f.
Approx version of Exponential
SP approx more generally

Thence structure \Rightarrow H.O.L.

1) $n \to p$
2) UMPS $O(n^{-\frac{1}{2}})$
Above are density/model approximations
But we want dist fn approximations!
a) - Do for scalar case
b) - Nuisance parameters eliminated by Laplace/\hat{p}^*

\[\int e^{\phi(y)} \, dy \]

Either: Exponential (Asy); General (Asy)

\[p(\theta) = \int_{-\infty}^{\infty} e^{\phi(y)} \, dy \]

Recall

\[= \int_{-\infty}^{\infty} e^{\phi(y)} \, dy = \int_{-\infty}^{\infty} e^{-\frac{y^2}{2}} \, dy = \sqrt{2\pi} \]

\[= \phi(n) + \varphi(n) \left(\frac{1}{n} - \frac{1}{q} \right) \text{LR} \]

\[= \Phi(n - n^{-1} \log \frac{r}{q}) \text{BN} \]

\[q = \text{SHLE} \text{in } \varphi \]

\[r = \text{SLR} \]

As earlier

\[q = \text{shape parameter} \]

\[\text{Only at } n, q \text{ can pass \text{ para approx \ in data}} \]
Jeffreys prior: \(\pi(\theta) = \sqrt{\int I(\theta) \ d\theta} \)

- Bad properties with many models.

Regression:
\[
\sigma^{-1} \frac{d\beta}{d\sigma} \quad \sigma^{-1} \frac{d\beta}{d\sigma}
\]
Flat for \(\beta \)
Flat for \(\log \beta \)

Recent: \(\beta \) is linear \(\log \beta \) linear

Jeffreys \(\rightarrow \) mod Jeff \(\rightarrow \) Linear Components

Dawid Stone Zidek
\[y_{1i} \sim N(\mu_1, \sigma_1^2) \]

\[y_{2i} \sim N(\mu_2, \sigma_2^2) \]

\[S = \mu_1 - \mu_2 \]

\[z = \frac{y_1 - y_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \]

Find a prior

Problems.

Fisher

Bhreens - Fisher

Jeffreys --- mod Jeffreys

Ghosh - Kim \(\leftrightarrow \) (check: Has 2nd [\(\square \)] prior! Basis

SLR \[\text{Train CLT + Slutsky} \]

3rd \[p^* \text{ Integrate BN/LR} \]

Open Issues: Why do things go wrong with B-N? Welch - Peer approximation h = very good
For $\mu_1 = 2.0$, $\mu_2 = 0.0$, $\sigma^2 = 1.0$ without loss of generality and for various $n_1 \geq n_2$, σ^2, we record the proportion of the 10,000 cases where the true δ is less than the lower limit and less than the upper limit of the 90% central interval.

<table>
<thead>
<tr>
<th>n_1</th>
<th>n_2</th>
<th>Method</th>
<th>$\sigma^2 = 2.0$</th>
<th></th>
<th>$\sigma^2 = 4.0$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td><Lower limit</td>
<td><Upper limit</td>
<td><Lower limit</td>
<td><Upper limit</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Target</td>
<td>0.0500</td>
<td>0.9500</td>
<td>0.0500</td>
<td>0.9500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sim SD</td>
<td>0.0022</td>
<td>0.0022</td>
<td>0.0022</td>
<td>0.0022</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Jeffreys</td>
<td>0.0094</td>
<td>0.9924</td>
<td>0.0107</td>
<td>0.9908</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ghosh & Kim</td>
<td>0.0199</td>
<td>0.9841</td>
<td>0.0221</td>
<td>0.9812</td>
</tr>
<tr>
<td></td>
<td></td>
<td>slr</td>
<td>0.1322</td>
<td>0.8718</td>
<td>0.1396</td>
<td>0.8636</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Welch</td>
<td>0.0293</td>
<td>0.9701</td>
<td>0.0349</td>
<td>0.9664</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Third order</td>
<td>0.0274</td>
<td>0.9731</td>
<td>0.0304</td>
<td>0.9677</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>Jeffreys</td>
<td>0.0385</td>
<td>0.9681</td>
<td>0.0295</td>
<td>0.9745</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ghosh & Kim</td>
<td>0.1097</td>
<td>0.8970</td>
<td>0.0924</td>
<td>0.9096</td>
</tr>
<tr>
<td></td>
<td></td>
<td>slr</td>
<td>0.1286</td>
<td>0.8685</td>
<td>0.1117</td>
<td>0.8868</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Welch</td>
<td>0.0829</td>
<td>0.9191</td>
<td>0.0724</td>
<td>0.9281</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Third order</td>
<td>0.0683</td>
<td>0.9300</td>
<td>0.0646</td>
<td>0.9332</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Jeffreys</td>
<td>0.0133</td>
<td>0.9895</td>
<td>0.0128</td>
<td>0.9899</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ghosh & Kim</td>
<td>0.0279</td>
<td>0.9745</td>
<td>0.0287</td>
<td>0.9733</td>
</tr>
<tr>
<td></td>
<td></td>
<td>slr</td>
<td>0.1072</td>
<td>0.8954</td>
<td>0.1024</td>
<td>0.8989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Welch</td>
<td>0.0356</td>
<td>0.9662</td>
<td>0.0364</td>
<td>0.9657</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Third order</td>
<td>0.0313</td>
<td>0.9664</td>
<td>0.0331</td>
<td>0.9655</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>Jeffreys</td>
<td>0.0348</td>
<td>0.9651</td>
<td>0.0361</td>
<td>0.9631</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ghosh & Kim</td>
<td>0.0474</td>
<td>0.9525</td>
<td>0.0458</td>
<td>0.9525</td>
</tr>
<tr>
<td></td>
<td></td>
<td>slr</td>
<td>0.0716</td>
<td>0.9285</td>
<td>0.0704</td>
<td>0.9310</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Welch</td>
<td>0.0494</td>
<td>0.9504</td>
<td>0.0479</td>
<td>0.9490</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Third order</td>
<td>0.0517</td>
<td>0.9488</td>
<td>0.0528</td>
<td>0.9505</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>Jeffreys</td>
<td>0.0410</td>
<td>0.9509</td>
<td>0.0411</td>
<td>0.9487</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ghosh & Kim</td>
<td>0.0466</td>
<td>0.9435</td>
<td>0.0467</td>
<td>0.9447</td>
</tr>
<tr>
<td></td>
<td></td>
<td>slr</td>
<td>0.0663</td>
<td>0.9434</td>
<td>0.0652</td>
<td>0.9435</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Welch</td>
<td>0.0468</td>
<td>0.9432</td>
<td>0.0472</td>
<td>0.9444</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Third order</td>
<td>0.0572</td>
<td>0.9528</td>
<td>0.0561</td>
<td>0.9524</td>
</tr>
<tr>
<td>20</td>
<td>15</td>
<td>Jeffreys</td>
<td>0.0486</td>
<td>0.9608</td>
<td>0.0486</td>
<td>0.9588</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ghosh & Kim</td>
<td>0.0531</td>
<td>0.9549</td>
<td>0.0520</td>
<td>0.9550</td>
</tr>
<tr>
<td></td>
<td></td>
<td>slr</td>
<td>0.0525</td>
<td>0.9402</td>
<td>0.0509</td>
<td>0.9420</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Welch</td>
<td>0.0531</td>
<td>0.9545</td>
<td>0.0525</td>
<td>0.9547</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Third order</td>
<td>0.0458</td>
<td>0.9468</td>
<td>0.0454</td>
<td>0.9475</td>
</tr>
<tr>
<td>30</td>
<td>20</td>
<td>Jeffreys</td>
<td>0.0450</td>
<td>0.9510</td>
<td>0.0464</td>
<td>0.9494</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ghosh & Kim</td>
<td>0.0492</td>
<td>0.9473</td>
<td>0.0491</td>
<td>0.9469</td>
</tr>
<tr>
<td></td>
<td></td>
<td>slr</td>
<td>0.0560</td>
<td>0.9467</td>
<td>0.0570</td>
<td>0.9462</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Welch</td>
<td>0.0494</td>
<td>0.9472</td>
<td>0.0492</td>
<td>0.9468</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Third order</td>
<td>0.0529</td>
<td>0.9504</td>
<td>0.0533</td>
<td>0.9507</td>
</tr>
</tbody>
</table>
TABLE 1b: For $\mu_1 = 2.0$, $\mu_2 = 0.0$, $\sigma_1^2 = 1.0$ without loss of generality and for various $n_1 \leq n_2$, σ_1^2, we record the proportion of the 10,000 cases where the true δ is less than the lower limit and less than the upper limit of the 90% central interval.

<table>
<thead>
<tr>
<th>n_1</th>
<th>n_2</th>
<th>Method</th>
<th>$\sigma_1^2 = 2.0$</th>
<th></th>
<th>$\sigma_1^2 = 4.0$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td><Lower limit</td>
<td><Upper limit</td>
<td><Lower limit</td>
<td><Upper limit</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>Jeffreys</td>
<td>0.0417</td>
<td>0.9592</td>
<td>0.0456</td>
<td>0.9564</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ghosh & Kim</td>
<td>0.0969</td>
<td>0.8855</td>
<td>0.0921</td>
<td>0.8930</td>
</tr>
<tr>
<td></td>
<td></td>
<td>slr</td>
<td>0.1479</td>
<td>0.8495</td>
<td>0.1544</td>
<td>0.8429</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Welch</td>
<td>0.0793</td>
<td>0.9232</td>
<td>0.0760</td>
<td>0.9283</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Third order</td>
<td>0.0651</td>
<td>0.9334</td>
<td>0.0640</td>
<td>0.9337</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>Jeffreys</td>
<td>0.0375</td>
<td>0.9606</td>
<td>0.0409</td>
<td>0.9587</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ghosh & Kim</td>
<td>0.0495</td>
<td>0.9504</td>
<td>0.0497</td>
<td>0.9493</td>
</tr>
<tr>
<td></td>
<td></td>
<td>slr</td>
<td>0.0760</td>
<td>0.9257</td>
<td>0.0799</td>
<td>0.9242</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Welch</td>
<td>0.0511</td>
<td>0.9496</td>
<td>0.0507</td>
<td>0.9484</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Third order</td>
<td>0.0518</td>
<td>0.9484</td>
<td>0.0520</td>
<td>0.9488</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>Jeffreys</td>
<td>0.0457</td>
<td>0.9540</td>
<td>0.0480</td>
<td>0.9538</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ghosh & Kim</td>
<td>0.0520</td>
<td>0.9477</td>
<td>0.0535</td>
<td>0.9484</td>
</tr>
<tr>
<td></td>
<td></td>
<td>slr</td>
<td>0.0630</td>
<td>0.9367</td>
<td>0.0630</td>
<td>0.9374</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Welch</td>
<td>0.0518</td>
<td>0.9484</td>
<td>0.0531</td>
<td>0.9485</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Third order</td>
<td>0.0517</td>
<td>0.9481</td>
<td>0.0516</td>
<td>0.9469</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>Jeffreys</td>
<td>0.0466</td>
<td>0.9542</td>
<td>0.0485</td>
<td>0.9515</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ghosh & Kim</td>
<td>0.0509</td>
<td>0.9490</td>
<td>0.0512</td>
<td>0.9477</td>
</tr>
<tr>
<td></td>
<td></td>
<td>slr</td>
<td>0.0577</td>
<td>0.9421</td>
<td>0.0597</td>
<td>0.9410</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Welch</td>
<td>0.0507</td>
<td>0.9492</td>
<td>0.0510</td>
<td>0.9482</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Third order</td>
<td>0.0509</td>
<td>0.9493</td>
<td>0.0516</td>
<td>0.9491</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
<td>Jeffreys</td>
<td>0.0549</td>
<td>0.9442</td>
<td>0.0545</td>
<td>0.9445</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ghosh & Kim</td>
<td>0.0471</td>
<td>0.9533</td>
<td>0.0483</td>
<td>0.9537</td>
</tr>
<tr>
<td></td>
<td></td>
<td>slr</td>
<td>0.0550</td>
<td>0.9443</td>
<td>0.0546</td>
<td>0.9446</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Welch</td>
<td>0.0513</td>
<td>0.9509</td>
<td>0.0496</td>
<td>0.9510</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Third order</td>
<td>0.0491</td>
<td>0.9486</td>
<td>0.0490</td>
<td>0.9504</td>
</tr>
</tbody>
</table>