NORMAL SAMPLES WITH LINEAR CONSTRAINTS
AND GIVEN VARIANCES

D. A. S. FRASER

1. Summary. In Biometrika (1948) a paper [1] by H. L. Seal contained a theorem applying to "n random variables normally distributed about zero mean with unit variance, these variables being connected by means of k linear relations." Arising from this is the question of how to obtain a set of normal variates connected by k linear relations and such that each variate has unit variance; or, more generally, connected by k linear relations and such that each variate has a given variance. The procedure for obtaining such a set of variates when existent from a set of independent normal deviates with unit variances is given in §S. In §§2, 3 and 4, we shall consider various conditions necessary for the existence and construction of such a set.

2. Normal distribution in a linear subspace. Let \((x_1, x_2, \ldots, x_n)\) designate a point in an \(n\)-dimensional Euclidean space \(R^n\). A set of variates \(x_1, x_2, \ldots, x_n\) can be considered as a random point in \(R^n\). In the present problem we shall assume the set has a multivariate normal distribution.

Consider \(k\) homogeneous and independent linear relations

\[
\sum_{j=1}^{n} a_{pj}x_j = 0 \quad (p = n - k + 1, \ldots, n).
\]

A variate satisfying these relations and these only will belong to an \((n - k)\)-dimensional linear subspace. By taking linear combinations of the above \(k\) relations, an equivalent set of \(k\) relations can be obtained such that they are orthogonal and normalized:

\[
\sum_{j=1}^{n} b_{pj}x_j = 0 \quad (p = n - k + 1, \ldots, n),
\]

and

\[
\sum_{j=1}^{n} b_{pq}b_{qj} = \delta_{pq}.
\]

By adding \(n - k\) rows, the matrix \(|b_{pj}|\) can be completed to an \(n\) by \(n\) matrix \(|b_{ij}|\) \((i, j = 1, 2, \ldots, n)\) satisfying the orthogonality conditions

\[
\sum_{k=1}^{n} b_{ik}b_{jk} = \delta_{ij}.
\]

Received July 8, 1950.

1It is to be noted that the statement of the theorem in [1] is incorrect. The theorem applies to the residuals of \(n\) normal variables after fitting \(k\) linear constraints.

363
This matrix can now be considered as the matrix of an orthogonal rotation of \(n\)-space. Consider coordinates \(y_1, y_2, \ldots, y_n\) with respect to the new axes: then

\[
y_i = \sum_{j=1}^{n} b_{ij} x_j.
\]

Since normality is invariant under linear transformations, a set of normally distributed \(x\) variates yields a set of normally distributed \(y\) variates, and conversely. A set of variates \((x_1, x_2, \ldots, x_n)\) satisfying \(k\) linear relations

\[
\sum_{j=1}^{n} a_{pj} x_j = 0
\]

is transformed by the above to set a of variates \((y_1, y_2, \ldots, y_{n-k})\) satisfying no linear constraints where \(y_{n-k+1}, \ldots, y_n\) are identically zero.

3. **Conditions on the variance.** We have solved the problem of linear constraints by working in an \((n - k)\)-dimensional subspace. How do we interpret in this subspace the original variance conditions:

\[
\text{var} \{ x_i \} = v_i \quad (i = 1, 2, \ldots, n),
\]

with

\[
y_r = \sum_{j=1}^{n} b_{rj} x_j, \\
x_i = \sum_{r=1}^{n-k} b_{ri} y_r.
\]

Each \(x_i\) is seen to be a linear combination of the \(n - k\) variates \(y_r\), and consequently the variance of \(x_i\) can be expressed in terms of the elements of the variance covariance matrix of the \(y_r\). Consider now a multivariate normal distribution in the subspace with covariance matrix \(\|\tau_{rs}\|\) with respect to the axes \(y_1, y_2, \ldots, y_{n-k}\).

Thus the variance conditions after rotation into the subspace become

\[
\sum_{r, s=1}^{n-k} b_{ri} \tau_{rs} b_{si} = v_i \quad (i = 1, 2, \ldots, n).
\]

4. **Existence.** Our problem has now reduced itself to that of finding a multivariate normal distribution in \(n - k\) dimensions with covariance matrix \(\|\tau_{rs}\|\) such that

\[
\sum_{r, s=1}^{n-k} b_{ri} \tau_{rs} b_{si} = v_i \quad (i = 1, 2, \ldots, n),
\]

or

\[
\sum_{r, s=1}^{n-k} c_{ri} \tau_{rs} c_{si} = 1 \quad (i = 1, 2, \ldots, n),
\]

where \(c_{ri} = v_i^{-\frac{1}{2}} b_{ri}\).
We have \(n \) equations with \(\binom{n - k + 1}{2} \) unknowns. If \(\binom{n - k + 1}{2} \geq n \), a solution will exist and can be obtained by solving the equation directly. If \(\binom{n - k + 1}{2} < n \), an application of linear regression theory would be indicated.

To find a matrix \(||\tau_{rs}|| \), if one exists, is equivalent to finding a generalized ellipsoid

\[
\sum_{r, s = 1}^{n-k} z_r z_s \tau_{rs} = 1
\]

passing through the \(n \) points

\((c_{1i}, \ldots, c_{n-k,i})\) \((i = 1, 2, \ldots, n) \).

This is accomplished using linear regression theory by fitting to the constant 1 the functions \(z_r z_s \) \((r, s = 1, 2, \ldots, n - k) \) for the \(n \) "sample" values given above of the vector \((s_1, s_2, \ldots, s_{n-k})\). If the sum of squares for residuals is zero then a quadratic surface exists. However, to have a solution to our distribution problem, the matrix of the quadratic form must be positive. If it is not positive definite, then our variance conditions have imposed a further linear constraint on the set of variates.

5. Conclusions. The problem may be stated: to find normal variables \(x_1, x_2, \ldots, x_n \) satisfying \(k \) homogeneous and independent linear relations

\[
\sum_{j=1}^{n} a_{pj} x_j = 0 \quad (p = n - k + 1, \ldots, n),
\]

and with

\[\text{var} \{ x_i \} = v_i \quad (i = 1, 2, \ldots, n).\]

The solution can be described in five steps.

5.1. Find a matrix \(||b_{pj}|| \) with \(p = n - k + 1, \ldots, n \) and \(j = 1, 2, \ldots, n \) with orthogonal and normalized rows equivalent to \(||a_{pj}|| \) as described in §2.

5.2. Complete \(||b_{pj}|| \) to an orthogonal matrix \(||b_{ij}|| \) \((i, j = 1, 2, \ldots, n) \).

5.3. Find a quadratic equation

\[
\sum_{r, s = 1}^{n-k} z_r z_s \tau_{rs} = 1
\]

satisfied by the \(n \) points

\((b_{1, i} \omega_i^{1/2}, \ldots, b_{n-k, i} \omega_i^{1/2})\) \((i = 1, 2, \ldots, n) \),

if it exists, directly or by regression theory as in §4. If the equation does not exist or if it exists with a non-positive matrix then the problem has no solution.

5.4. If the matrix \(||\tau_{rs}|| \) is positive, then find random variates \(y_1, y_2, \ldots, y_{n-k} \) with zero means and \(||\tau_{rs}|| \) as covariance matrix. (If \(||\tau_{rs}|| \) is positive
definite, take the square root matrix of $\|\tau_r\|$ and apply as a linear transformation to $n - k$ independent normal variates with means 0 and variances 1. If positive but not definite, then the previous method will work in a subspace of $y_1, y_2, \ldots, y_{n-k}.$

5.5. Obtain the set of x variates, thus solving the problem, by applying the transformation

$$x_i = \sum_{r=1}^{n-k} b_{ir} y_r$$

to the y variates obtained in 5.4.

References

University of Toronto