Stevens

Exp Road \(f(y; \phi) = \exp \{ y \phi - k(\phi) \} \)
\(h(y) = \text{"SP version"} \)

\[r = \alpha n (\phi - \bar{\phi}) \times [2 (l(\hat{\phi}; y) - l(y; y))]^{1/2} \]
\(a_n = -\ell_{x_0} (\hat{\phi}) \) in Stands
\(r^+ = r + \chi/6 = r + a_3/6 a_2^{1/2} \) --- notes

\text{Case: Scalar } \phi

\text{Intert Vector } \phi = (\phi_1 \phi_2) \text{ Scalar } \phi

\text{Want: } \phi \text{ for } \phi \text{ SLR}

I try directional connection "Bayes"

\(P(\phi) = 2w^0 \) order

\[R(\phi_1, \phi_2; \hat{\phi}_0) \]

Rescaling \(\phi \) in each direction

Doing "G" connection in each direction

Thinking: \(a_2 = I \)
I Multivariate r-connected

But $f^0 = I$

New:

\[r^2 \] \[\omega = 2(\hat{e} - e) \]

\[r(u) \]

Sensible (future) usage: re r

BN 1986 + r re dm

Make $f^0 = I$

Do W-P in each direction (via expansions)

Get $\phi^0 + g\phi$ to ϕ at ϕ^0

With ϕ Things are location!

New r^+ in 2nd order; step towards r^+ but easier

\begin{align*}
1) \text{Median - Skewness} \\
2) \text{Reparameter: in each dm} \\
\text{Converting r}
\end{align*}
Scalar full

Next: Curved interest: flag Bayes