STA 4412: Statistical Inference: New theory, techniques, current research, ...

Prerequisite: STA 422

Theme: Current theory, methods, research, conflicts ... usually to joint paper

Evaluation: Attendance, participation, contributions @ 1/3

Proposed

- Brief overview of STA 422
- Details, understanding, fine-tuning of

- What is statistical inference?
- Why does statistics have two approaches?
- New topics, research, directions

Statistics See Perception-role.pdf

Perception: 1) NSERC/grants/SSC 2) Science Feb 11, 2011 - Issue on Data
Science Sep 23, 2011 - Andrew Groves: Don't need clinical, again, and again, and again
Science Dec 2, 2011 - (replication but not from "core"

Two approaches + "Discipline" should be embarrassed!
Background: 422: 7 topics

1. p-value: Core of S.I. \(\rho(\gamma) = \text{Prob}\{\text{data} \leq 4\} \)

2. \(y(\theta) = \bar{y} \)

3. \(y = X\alpha + \epsilon \in N \)

4. \(\rho(\theta) = F(y; \gamma) = F_0(\gamma) \text{ Contri. (Uo, i)} \) Stat test \(y \) data

5. \(= S(y^0; \gamma) \) stochastic

6. Want in general \(\frac{\text{dim } y}{\text{dim } \theta} = p \)

7. \(\frac{\text{dim } \theta}{p} \geq n \)

8. \(\text{(Conf. from } \rho(\theta)) \)

9. \(\hat{\theta}_p \text{ is } \beta \)-level conf Reg. Reproducibly

10. \(\text{Upon conf Region:} \)

11. \((\hat{\theta}_L, \hat{\theta}_U) \approx 85\% \text{ Conf Int} \)
(ii) \(\text{Obs } L(\theta) < L(\theta_0) \)\\
\(\text{Integrate with a distr. when } \theta \in \)\\
\(\text{1st + 2nd, 3rd} \)

(iii) \(\frac{L(\theta)}{L(\theta_0)} \approx N(\theta, \hat{\omega}(\theta)^{-1}) \) ; \(c(\theta) \to \)\\
\(c(\theta) = c(\theta_0) + \frac{1}{2} \hat{\omega}(\theta_0)^{-1} \theta - \theta_0^2 \) \(\approx \) \(c(\theta_0) + \frac{1}{2} \hat{\omega}(\theta_0)^{-1} (\theta - \theta_0)^2 \) \(\approx \) \(\) Quadratic \(\implies \) \(\hat{\theta} \) Distr. &\ etc \ etc \ 1st + order
Higher Order: Laplace \(O(n) \) sup expand. Terms are held by integrable regulars.

Key calculation:

\[
\int_0^\infty \phi(x) e^{-3x + 4x^2/2n} \, dx = 1 + (3a_4 + 5a_5) \frac{1}{2n}
\]

\(\phi(x) = e^{-3x + 4x^2/2n} \)

\[
\int\phi(x) \, dx = (2\pi)^{3/2} h(\lambda) \left[\int_0^{1/2} e^{\lambda x} \, dx + O(n^{-2}) \right] \quad NB
\]

Saddlepoint: James 1934 in BN 1939 \(+ \) \(+ \)

EM \(f(y; e) = \exp\{\phi(e) - k(01) h(y)\} \quad \frac{dy}{dx} = \text{pdf} \)

SP \(g = c \exp\{e - \hat{\theta}\} \cdot \frac{1}{\sqrt{2\pi}} \end{array} \begin{array}{l}
\int_{-\infty}^{\hat{\theta}} \text{(Gaussian ratio)} \quad \text{NB}
\end{array} \]

Scalar \(F(y; e) = e^{\phi(e) - \hat{\theta} y} \quad \text{for} \ y > 0 \quad \text{me dep} \)

Asymptotics: Regulations \(f(y; e) \)

\(f(e; y) = e^{\phi(e) - \hat{\theta} y} \left[\int_0^{1/2} e^{\lambda y} \, d\lambda \right] \quad \text{const at data} \)

Just need target V \(\cdot \text{Re} \left[e^{-i\theta} \cdot \int_0^{1/2} \right] \)

BN p-formula: Proposed BN 1980 BN invariance \(B \gamma = \hat{p} \quad \text{p dependence} \quad (\hat{p} = \frac{1}{\delta} \ln\lambda(y)) \)

Target \(\gamma_0 \) Too C V

Need \(V = (\mu - \mu_B) \), at data X e.
Taylor Series (As in Laplace)

"A Taylor series can be used in general models" (Ref: neumann.hec.ca/pages/jean-francois.plante/SSC2009/Poster.html)

Taylor expansion: Entry! Power! Use! Refer! Recommend.

209.pdf

\[\text{linear Taylor series} = \text{Taylor series} \]

\[n, n', \text{etc.} \]
Bayes: Jeffreys' prior: Current version | Check! Improve

Second order analysis (HOL; O(n^2)): Expect model: Easies

Scalar y, θ case $\sqrt{g(y)}$

$f(y; \theta) = \exp\left[\phi(g(y) + K(\theta)) \right] h(y)$ on \mathbb{R}^n

$f(y; \theta) = \exp\left[\phi - K(\theta) \right] h(y)$

Both monotonic in ϕ $Q_\phi = \phi h_n(\phi) (\phi^{-1} - 1)$

$f(y; \phi) = e^{\phi} \phi h_n \left(\phi \right) \frac{1}{\phi} \left(\phi^{-1} - 1 \right)$

$F(y; \phi) = \Phi \left(\phi - e^{-\phi} \right)$

$\Phi \left(\phi \right)$

$O(n^{-1/2})$
Exponential models... via log-model expansions

Forget!

Normal model Ø

Exotic model ... second order... easy/accurate... just need \{ \Phi(n-n'1g-\varphi/2) \} etc... easy.

\[
f(y; \theta) = c \exp \{ \phi(\theta) \Delta(y) + \kappa(\theta) \Psi(y) \} + \sum_{n=1}^{\infty} \frac{1}{n!} \exp \{ \Delta(y) \} \left(\psi(\theta) \right)^n
\]

Auto/para

\[
\lim_{n \to \infty} \frac{1}{\sqrt{n}} \sum_{j=1}^{n} \Theta_j = \{ \Theta \} \text{ sufficiently Corr.}
\]

Likelihood is correct at each point

"Fourier inversion... " Cheap!" Easy

"A Taylor view of \(\tau \) and \(\tau' \) in general models" #6 on web page... jean-francois

Exp Models (No X)

\[
f(y; \theta) \to f(y; \phi) \quad \text{as } n \to \infty
\]

\[
f(y; \theta) \to f(y; \phi) \quad \text{as } n \to \infty \quad \text{and} \quad \exp \left\{ \frac{\Delta(y)^2}{2} \right\} \text{ for large } \Delta(y)
\]

Regular

Asymptotic

\(n \to \infty \)
Case: dimo-daim - I Scalar

Euler Angle Integration: No Scale-up

Fig. 2.1: 222pm 2-2
Scalar Expt model: centered & scaled coordinates

\[f(x; y) = \frac{1}{(2\pi)^{\frac{3}{2}}} \exp\left\{ -\frac{(x - \mu_x)^2}{2} - (y - \mu_y)^2 \right\} \left(1 - \omega_3 \delta x^2 \right) \]

Does this integral to 1?

\[\mathbb{E}\{a x^2 + b y^2 + c x^3 \mid y\} = 0 \quad \forall \phi \]

Centering, scaling: Regularly Arg: \(-\frac{1}{2} + s\phi\) Stable

One parameter (math) \(\theta_3\) Get \(S^3\) etc as above

"Second new model" \(\Rightarrow 264\).pdf; Jean-Francois (and); simplified

\[264\).pdf -- why not go vector

Centering Scaling 2-3

\[E\{e^2 + 3\delta\phi\psi\} = 0 \]

\[N(\psi; 1) \]

NB 264.pdf
(2) Scalar y, Scalar θ

- $f(y, \theta)$

- y°

- "frequentist"
 - $p(\theta) = \frac{\text{Proportion} \text{ data on para scale } \theta}{\text{Proportion} \text{ left if data not on para } \theta}$
 - $\theta = \infty$ $f(y, \theta)dy$

- Bayesian

 - $L(\theta) = f(y \theta)p(\theta)$

 - $L(\theta) = C$

- Here $\{f(y, \theta) \mid p(\theta) = a(\theta)\}$

- NB $\{a(\theta) = c\}$

- Bayes is confidence

- Welch & Peers 1963 &

- Examines

- For Statistic, Jeffreys prior: root into prior gives conf to 2nd order

- Says: Scalar Expert model is 1 Coch to 2nd order

- "Math Stat Important!"
Bayes (1763) | Jeffreys (geophysical, prob/math)

\[\tilde{\theta}(\theta) = \left[\ln(l(\theta)) \right]^{1/2} \cdot d\theta \]

Jeffreys prior

\[\pi(\theta; y) = \left[L(\theta) \left[\ln(l(\theta)) \right]^{1/2} \cdot d\theta \right] \]

Info/Accuracy

Jeffreys 1964: "Problems" Modified Jeffreys

\[\frac{\partial N}{\partial \beta} \frac{\partial \beta}{\partial \theta} \]

Nat Haar

What priors? Jeffreys \(p > 1 \)

Jeffreys mod \(\sqrt{\frac{N}{2\pi \sigma^2}} \)

Transform model like \(N \times \beta \sigma^2 \)

Other proposals: -- Bayes literature

Jeffreys \rightarrow \text{Plate Tectonics} \text{ Nonsense}

Fisher \rightarrow \text{Collect data on magnetism; } \vec{f} \in \mathbb{R}^3 \text{; analysis: decision } \rightarrow \text{Plt}

\[i(\theta) = E_{\tilde{\theta}} \left[-\ln(l(\tilde{\theta}); y) \right] \]
Normal models; Exponential models (Generalized...just linearly); ... but, but, ...

Better models: no both error & structure. Taylor is available to simplify

Seemingly unrelated regression (SUR) 221.pdf Journ Econometrics Fraser Rekkas Wong

A comment: Use Likratio 2(L-^-hat) and Bartlett correction ?

Get third order! Likratio But lose direction of departure

1111 X

Books

Here: Properties of Expre models ... 2nd order (more flexible) 264

Real life issues: Are you going to be B and throw critical info away ??

Why two "theories"? You need to know! Welch Peers Vector case

EM $f(x; \theta) = \phi(x - \phi) \exp\left\{-\theta_1 \phi^3 n^{1/2} + \theta_2 \phi^3 / 6 n^{1/2}\right\} \left(1 - \theta_3 \phi^2 / 2 n^{1/2}\right)$, as \(\phi \rightarrow \infty \)
Normal models; Exponential models (Generalized... just linearly); ... but, but

Better models: re both error & structure

Seemingly uncorrelated regression (SUR) 221.pdf Jour Economometrics Fraser Rekcas Wong

A comment: Use Likratio 2(\hat{\theta} - \theta) and Bartlett correction!

Get third order!
But lost direction of departure

\[f(\theta; \varphi) = 1/(\sqrt{2\pi\sigma^2}) \exp\left\{ -\frac{(\theta - \varphi)^2}{2\sigma^2} \right\} \]
\[(1 - \alpha \cdot 3\delta/2n^2) \]

Here: properties of Expte models ... 2nd order (more flexible!)

Real life issues: Are you going to be B and throw critical info away? ??

"Our" model for calculations -- 1
But 40 vector!
Laplace Gauss "Liked" flat priors: Easy answers; seemed sensible.

Jeffreys

\[i(\theta) = \int -\log(\theta; y) f(y; \theta) \, dy = E - \log \]

Jeff \to Bayes \quad \pi(\theta) = i^2(\theta) \quad \text{Scalar } \theta

\[\text{W-P \ \inference} \quad \int_{-\infty}^{\infty} \pi(\theta) L(\theta) \, d\theta = \int y f(y; \theta) \, dy \quad p(\theta) = \text{"Stoch. Inc"} \]

Use scalar Jeff

95% Int \to 95% CI

\beta \text{ Int} \to \beta \text{ CI}

\text{N.B.} \quad \text{Most of all CI.}

if \ f(y; \theta) = f(y - \theta) \quad \text{Location}

otherwise: Usually different but \text{Exact model}

\text{W-P}\quad \Rightarrow \text{Second order}

\Rightarrow \text{Prove here: easily}

\Rightarrow \text{Easy W-P proof}
Proof of WP.

Prove: Jeffreys for Scalar par exp De model gives Conf Ints

Use: Confidence bounds; use quantile => Also for intervals

Scalar para M

Check Jeff

Jeff:

\[\beta(\theta) = \beta = \frac{\int_0^\theta (1 + \alpha \theta / 2 \sqrt{n}) d\phi}{\alpha \beta^{2/4} / \sqrt{n}} \]

\[\theta = \Phi(\beta) \]

\[\hat{\theta} = \Phi^{-1}(\beta) \]

\[\Phi(\beta) = \beta \]

\[\hat{\phi} = \frac{\sum (1 + \alpha \theta / 2 \sqrt{n})}{\alpha \beta^{2/4} / \sqrt{n}} \]

\[\log L_k (\hat{q}, \hat{p}) \]

\[\hat{q} = \frac{\hat{p}}{1 - \alpha \hat{p} / 2 \sqrt{n}} \]

1st

\[\hat{p} = \hat{p} \]

E: Can perf.

Solve Quadv. in \(q \) & perfh.

Score -> MLE

Constant info

repara....
\begin{align*}
\beta &= \int_0^\infty \left[1 + \alpha \varphi / 2 \pi n^{1/2} \right] d \varphi = \varphi + \alpha \varphi^2 / 4 n^{1/2} \\
\varphi &= \beta - \alpha \beta^2 / 4 n^{1/2} \\
\beta &= \hat{\beta} + \alpha \hat{\beta}^2 / 4 n^{1/2} \quad \text{Why? Inv. under replica!}
\end{align*}

\begin{align*}
\hat{\beta} &= \beta - \alpha \beta^2 / 4 n^{1/2} + \alpha \hat{\beta}^2 / 4 n^{1/2} = \beta - \alpha \beta^2 / 4 n^{1/2} \\
\beta &= \frac{\hat{\beta} + \alpha \hat{\beta}^2 / 4 n^{1/2}}{1 - \alpha \beta / 2 n^{1/2}} \\
F(n; \varphi) &= \frac{1}{\sqrt{2\pi}} \exp \left\{ - \frac{(n-\bar{\varphi})^2}{2} - \alpha \varphi^3 / 6 n^{1/2} + \alpha \hat{\varphi}^3 / 6 n^{1/2} \right\} (1 - \alpha \beta / 2 n^{1/2})
\end{align*}

\begin{align*}
\varphi &= \beta - \alpha \beta^2 / 4 n^{1/2} \quad \text{Substitute} \\
\beta &= \frac{\hat{\beta} + \alpha \hat{\beta}^2 / 4 n^{1/2}}{1 - \alpha \beta / 2 n^{1/2}} \\
&= \frac{1}{\sqrt{2\pi}} \exp \left\{ - \frac{\beta^2}{2} - \alpha \beta^2 / 12 n^{1/2} \right\} - \beta^2 / 6 n^{1/2} + \alpha \beta^3 / 6 n^{1/2} \\
&= \frac{1}{\sqrt{2\pi}} \exp \left\{ - \frac{\beta^2}{2} - \alpha \beta^2 / 12 n^{1/2} \right\} - \beta^2 / 6 n^{1/2} + \alpha \beta^3 / 6 n^{1/2} \\
&= \frac{1}{\sqrt{2\pi}} \exp \left\{ - \frac{\beta^2}{2} - \alpha \beta^2 / 12 n^{1/2} \right\} - \beta^2 / 6 n^{1/2} + \alpha \beta^3 / 6 n^{1/2}
\end{align*}

\begin{align*}
\int_0^\infty \exp \left\{ - \frac{\beta^2}{2} - \alpha \beta^2 / 12 n^{1/2} \right\} d \beta = \frac{1}{\alpha^{1/2} \beta^{1/2} \sqrt{2\pi}}
\end{align*}

\begin{align*}
\text{Gagn model}
\end{align*}
Taylor expansion:

\[f(y) = f(y_0) + f'(y_0)(y-y_0) + \frac{f''(y_0)}{2!}(y-y_0)^2 + \ldots \]

\[y \approx y_0 \quad f(y) = f_0 + f_1(y-y_0) + \frac{f_2}{2!}(y-y_0)^2 + \frac{f_3}{3!}(y-y_0)^3 + \ldots \]

Taylor (Ito)

Tensored notation: sum over indices

\[f = f_0 + f_1 y_0 + f_2 y_0^2 + \frac{f_3}{2!} y_0 y_1^2 + \ldots \]

\[x, p = 1, 2, \ldots, p \]

\[f_{\alpha_1 \alpha_2} \rightarrow \sum_{\alpha_1} f_{\alpha_1 \alpha_2} \quad y_1 y_2 y_3 \sim \mathcal{N} \]

\[y_1 y_2 y_3 \quad \text{once} \]

\[y_1 = y_1 y_2 y_3 \quad \text{three times} \]

Taylor's Cosmodel

O(n,h) O(n') terms

CLT → Earle's

Seeing what function of interest looks like locally

Delta method

Current directions!
Where are we?

1. Likelihood (log version)
 \[\ell(\hat{\theta}; y) = \ln \hat{\ell} - \ln \ell = \frac{n}{2} \]
 \[n = \frac{\hat{\ell} - \ell}{\sqrt{2}} \]
 \[\theta = \text{Para. Inv.?} \]

2. Exponential model: Approx for general model! Power!
 \[f(y; \theta) = c(\theta) e^{\theta y} \]
 \[h(y) \rightarrow \text{Special} \Rightarrow \text{Gen(Lin)} \text{models} \]
 \[f(\hat{\theta}; y) = c(\hat{\theta}) e^{\hat{\theta} y} H(\hat{\theta}) \approx \hat{\ell} - \ell \approx \frac{n}{2} \]
 \[S^2 = \frac{c(\hat{\theta})}{(2\pi)^{p/2}} e^{\hat{\theta} - \ell} \]
 \[O(n^{-1/2}) \]

3. General A.S. model: \(f(y; \theta) \)
 \[V = \frac{\partial^2}{\partial \theta^2} \text{fixed } p \text{-vector} \]
 \[\phi(\theta) = \frac{\partial}{\partial \theta} | y \]
 \[\text{Get: Exp. Model} \]
Why we study Exptl models? See above! Now: Location vs. Exptl models!

1. Location: $f(y - \theta)$
 - $p(\theta) = \int_{-\infty}^{\infty} f(y - \theta) \, dy$
 - $A(\theta) = \int_{-\infty}^{\infty} f(y - \theta) \, f(y - \omega) \, dy$
 - Vector $\{y_i, \theta\}$

2. Exptl: $c(\theta) \exp\{\phi(\theta) \delta(y)\} f(y)$
 - Marginal to $f(y)$
 - Canonical $\phi(\theta)$ & SP.

Wald–Peers 1963

Scalar α, ϕ

Centered α & ϕ

Use $n(\theta) = \frac{\theta^2}{2}$

Get confidence to 2nd order

Proof via 2nd order Taylor

Last day: $E(y^2 \mid \phi) = \phi^2 + 3\phi$ in Normal case

SP but 2nd

Story

$N $0 1

S-3s $\rightarrow \phi$

Know: When

264-exl-Student.pdf

$f(\beta - \beta)$

2nd

$f(\hat{\beta} - \beta) = \frac{1}{\sqrt{2\pi} \sigma^2} \exp\left\{-\frac{\hat{\beta}^2 - \beta^2}{2\sigma^2}\right\} \, d\hat{\beta}$

264+exl-Student.pdf 265.pdf (to come)
\(f(y; \theta) = c(\theta) \exp \{ \phi(\theta) \cdot s(y) \} h(y)^{-\frac{1}{2}} \)

\(g(s; \phi) = \frac{1}{(2\pi)^{\frac{n}{2}}} \exp \{ -\frac{1}{2} (s - \hat{\phi})^T \Sigma^{-1} (s - \hat{\phi}) \} \)

1. \(\lambda < \lambda_0 \) \(\phi < \phi - \hat{\phi} \) nice
2. Scale: \(\hat{\phi} = I \) \(\phi \leftarrow \frac{1}{1 + \hat{\phi}} \cdot \phi \)

\(\hat{\phi} = -\frac{1}{2} \left\{ (s_1 - \phi_1)^2 + \ldots + (s_p - \phi_p)^2 \right\} \)

\(\exp \{ -\hat{\phi} \} = \phi(s - \phi) \)

\(\text{In level here!} \)

General \(\lambda \Theta \in \mathbb{R} \)

\(\text{Thank you!!} \)

\(\text{Next here!} \)
\[g(x, \phi) \text{ after Stagation} \]
\[
= \phi(x-x) \exp \left\{ -a_{11} \phi_1 \phi_1 / 2n^{1/2} + a_{111} \phi_1 / 6n^{1/2} \right. \\
- a_{12} \phi_1 \phi_2 / n^{1/2} + a_{112} \phi_1 \phi_2 / 2n^{1/2} \\
- a_{13} \phi_1 \phi_3 / n^{1/2} + a_{123} \phi_1 \phi_3 / 2n^{1/2} \\
+ a_{21} \phi_2 \phi_1 / n^{1/2} + a_{22} \phi_2 \phi_2 / 2n^{1/2} \\
+ a_{23} \phi_2 \phi_3 / n^{1/2} + a_{213} \phi_2 \phi_3 / 2n^{1/2} \\
+ a_{31} \phi_3 \phi_1 / n^{1/2} + a_{32} \phi_3 \phi_2 / 2n^{1/2} \\
+ a_{33} \phi_3 \phi_3 / n^{1/2} + a_{312} \phi_3 \phi_2 / 2n^{1/2} \\
\left. \right\} \text{d}x
\]

\[N \phi \]
\[E(\lambda) = \phi \]
\[E(\lambda^2) = \phi^2 + 1 \]
\[E(\lambda^3) = \phi^3 + 3\phi \]
\[E(\lambda^4) = \phi^4 + 4\phi^2 + 2 \]

Expand \(\lambda - \bar{\lambda} \) to next order; have \(\phi(x-x) \)
\[
\begin{bmatrix}
\phi_1^2 \\
\phi_1 \phi_2 \\
\phi_1 \phi_3 \\
\phi_2 \phi_3
\end{bmatrix} \begin{bmatrix}
\Delta_1^2 \\
\Delta_1 \Delta_2 \\
\Delta_1 \Delta_3 \\
\Delta_2 \Delta_3
\end{bmatrix}
\]

Have the mult ExpTo model in \(\text{Tray O}(n^{-1}) \) fom

Reading (for details) \(\rightarrow 264 \text{. pdf} \)
Mini project \(f(\beta-\beta) \)
1) 264. pdf: Details: Corrections; Understanding
 Workshop Seminar
 Participation

2) 265... coming! Or...?
 Tools: $E(\theta); \ell(\theta;y);$ Distns; $SP; p^*;$ Exptl models; log-model expansions
 New tools for new problems
 ODE tools for new problems
 New tools for new problems SP, p^* etc as done

3) Questions re "Inference"
 $CLT \Rightarrow \theta \Rightarrow \text{Asy } N(1) \Rightarrow \text{Appx } N \Rightarrow \text{LLN Asy } \hat{\theta} \ldots$
 $n \Rightarrow \text{very a lot}$
 $0(\sqrt{n}) \Rightarrow \alpha(n^{-\frac{3}{2}})$ prec.

265: Use rec. L Anal \Rightarrow prior

2) Rec

$\mathcal{S}_n \rightarrow \chi^2 \left(\phi - \phi_0 \right) \frac{1}{2} \rightarrow \phi$

Triovial $\Rightarrow (1/2) \chi^2$ or the

Pf family

$\hat{\phi}$ for q_0 Way back $\hat{\phi} = \frac{1}{2}n \Rightarrow \phi_0$ from

$\sim N(\ldots)$

1st infer

$(\phi - \phi_0) \frac{1}{2} \text{ in } 2.5$ slch

How does (3) \Rightarrow (4)

$\text{Exp} \Rightarrow \text{Exp}(\phi); \phi^* \text{ comes from stat. cali; Expd}$

Recall: Exp(ϕ) Exp(y) Elic; Failrate

$\phi(\phi) = F(y; \phi)$ Table

$\phi(\phi) = \int \frac{1}{2} \theta_0 \theta_0 \text{ PDF}$

$\alpha(\theta) = \int_0^1 \frac{1}{2} \theta_0 \theta_0 \text{ PDF}$

$\text{Recall: Exp}(\theta) \rightarrow \text{Exp}(y) \Rightarrow \text{Elct; Failrate}$

$\phi(\phi) = \int_0^1 \frac{1}{2} \theta_0 \theta_0 \text{ PDF}$
\[f(y \mid \theta) \]

\[p(\theta) = \int_{-\infty}^{\infty} f(y \mid \theta) \text{d}y \Rightarrow n(\theta) = \int_{-1}^{1} f(\theta \mid \phi) \text{d}\phi \]

Why equal? NB: Limit/heat

\[\mathcal{N}(0,1) \]

\[p(\theta) \text{us } a(\theta) \text{ when } f(y \mid \theta) \text{ ex Exp} \]

W-P definitive (asy; 2nd; proof hints)

\[\text{Adjusted Jeffreys } \quad \text{dep}(\phi) \]

\[\frac{1}{2} \left(\phi - \phi_0 \right) = \mu u \]

\[\phi_0 \text{ does not depend on data} \]

\[\phi = \text{Can/Exp param} \]

\[\frac{2\gamma}{\phi} \]

\[\mu \times \times \]

\[\phi(\phi) = -K(\phi) = \mathcal{G}(\phi) \]

\[\text{NB: Any model } \rightarrow \text{EM } \& \text{ 3rd mde} \]

\[O(n^{1/2}) \]

\[O(n^{-1}) \]

\[\text{Error acc. } O(n^{1/2}) \]

\[\text{Prob theory } \]

\[\Phi(\ldots) = p + O(n^{-1/2}) \]

\[\text{Rate to "limit"} \]

\[\frac{X/3}{n \times n} \text{ more } \]

\[\frac{n^{1/2}}{n !/2} \]

\[n^{1/2} \]

\[n^{1/2} \]

\[n^{1/2} \]

\[n^{1/2} \text{ HIGH for } n = 2 \]

\[n^{1/2} \text{ HIGH for } n = 2 \]

\[\text{MCMC: } 2 \text{ fig} \text{ mean } 3 \times 10^6 \]
Scalar Exp model 2nd $g(0; \phi) \exp\left[-\alpha \phi / h^2 + a \phi^2 / h^2 \right] (1 - \alpha \phi / h) \cdot \text{as} = g(0; \phi)$

ϕ / ϕ \hspace{1cm} ϕ / ϕ

GLM: Other quantities a asymptotic, layout calc.

$\mathcal{L}^* = N \cdot \mathcal{L} \cdot \log \sqrt{b / q}$

Uses SLR r

$mee q$ but cannot

$r^* \in \mathcal{S}P$ -- Not in Daniels

Not just $\mathcal{S}P$

Version using r^* plus isolation of ϕ^2

Likelihood $G(\phi)$

Link m: inverse

$G(\phi)$ = Lik anal ϕ $N(\phi, y)$

No 3rd order r near ϕ

Depend on α or ϕ

$N / 2$ NB

Staebler

Lik ratio (SLR)
Exp model 2nd Order

\[g(z; \theta) = \phi(z; \theta) \exp\left\{ -\left(\frac{\theta_1}{2} z^2 + \theta_2 z + \theta_3 \right) \right\} \]

Vector version: \(\theta_1, \theta_2, \theta_3, \ldots \)

Scalar case: Project \(n, \theta, \sigma^2, G \) & more & potential publication [correct!]

Alternatives? 4412 \(\Rightarrow \) Research aims: publishable: A contribution to Statistics

Do here in C/B? First, Deriv

The research!

Score \(\hat{\theta} = 0 \)

\(\hat{\phi}(z) = \frac{a - \theta_0}{2n^{1/2}} \)

Want \(n \cdot \frac{c}{2} \cdot \text{need} \)

\(\hat{e} = -\frac{a^2}{2} + \frac{\theta_0}{2} a^2 + \frac{\theta_1}{6} n^{1/2} + \frac{\theta_2}{2} n^{1/2} + \frac{\theta_3}{2} n^{1/2} \)

\(= \frac{\theta_0}{2} a^2 + \frac{\theta_1}{6} n^{1/2} + \frac{\theta_2}{2} n^{1/2} + \frac{\theta_3}{2} n^{1/2} \)

\(\hat{e} - \frac{n^{1/2}}{2} = (\frac{\theta_0}{2} a^2 + \frac{\theta_1}{6} n^{1/2} + \frac{\theta_2}{2} n^{1/2} + \frac{\theta_3}{2} n^{1/2}) \)

\(= (\frac{\theta_0}{2} a^2 + \frac{\theta_1}{6} n^{1/2} + \frac{\theta_2}{2} n^{1/2} + \frac{\theta_3}{2} n^{1/2}) \)

\(\hat{c} = \frac{a}{2} n^{-1/2} - \frac{\theta_0}{2} a^2 + \frac{\theta_1}{6} n^{1/2} + \frac{\theta_2}{2} n^{1/2} + \frac{\theta_3}{2} n^{1/2} \)

\(\left(x^2 + ax + a^2 \right) = \left(x + \frac{a}{2} \right)^2 \)

\(\sqrt{2} \text{ Root} \)

\(\text{Factors} \)

\(\text{Recall} \)

\(\text{Sign} \) of \(1 - \phi \)
\[p = -\phi^2 / 2 - \rho \phi^3 / 6n^{1/2} + \phi \delta \]
\[\hat{\phi} = s - \alpha s^{1/2} / 2n^{1/2} \]
\[\hat{\rho} = \phi = s - \alpha s^{1/2} / 2n^{1/2} + \phi \delta \]
\[\hat{\phi} = s - \alpha s^{1/2} / 2n^{1/2} \]
\[\hat{e} = \text{SLR} \]

Recall: Expt model \((d_{n+1} = 1)\): General form \(g(\hat{\phi}; \delta) \)

\[q = (\hat{\phi} - \phi) \int_{\phi}^{1/2} \]

\[= (s - \alpha s^{1/2} / 2n^{1/2} - \phi) \left(1 + \alpha s / 2n^{1/2} \right) \]

\[= s - \phi - \alpha \phi s / 2n^{1/2} \]

\[- \alpha s^2 / 2n^{1/2} + (s - \phi) \alpha s / 2n^{1/2} \]

\[r = s - \phi - \alpha (\phi^2 + \phi s + \phi^2) / 6n^{1/2} \]

\[q = s - \phi - \alpha \phi s / 2n^{1/2} \]

\[\hat{\phi} = s - \alpha s^{1/2} / 2n^{1/2} \]
\[r = \alpha - \phi - \alpha(G^2 + \phi G + \phi^2)/6n^{1/2} \]
\[q = s - q - \alpha \phi s/2n^{1/2} \]
\[\phi = s - \alpha \phi^2/2n^{1/2} \]

Want now a quotient #

\[r* = \log \frac{n}{q} \]

\[\frac{r}{q} = \frac{s - q - \alpha(G^2 + \phi G + \phi^2)/6n^{1/2}}{s - q - \alpha \phi s/2n^{1/2}} = 1 - \alpha(G^2 + \phi G + \phi^2)/6n^{1/2} \]

log \frac{n}{q} = -\alpha(d - q)/6n^{1/2}

\[r* = s - q - \alpha(G^2 + \phi G + \phi^2)/6n^{1/2} + \alpha/6n^{1/2} \]

Next we calculate

\[G(0; \mu, \sigma) = \int G(n; \mu, \sigma) \, d\sigma \]

Next we calculate

\[\Phi(n) = \Phi(\mu) + \sigma(n-\sigma) \int \Phi(\mu) - \phi(x) \, dx \]

\[g(x, y) = g(x) + g(y) \]

value

2nd

Next we calculate

\[G(0; \mu, \sigma) = \int G(n; \mu, \sigma) \, d\sigma \]

Get equal

\[207, \text{ pdf} \]

\[J - F \text{ on web} \]

\[LR \text{ Bartlett} \]

Scale

3nd
Model skewness and its effect on inference

(i) Generalized linear models: Exponential model &
Some parameterization of $f(y_i; \theta)$ is taken to have linear form $X_i \beta$

(ii) Tools

1. Exp model
 2nd order
 $q(s, q) = \phi(s - q) \exp\left[-\alpha \frac{q^2}{2n^{1/2}} - \frac{d}{2n^{1/2}}\right] \left(1 - \frac{q^2}{2n^{1/2}}\right)$. Do
 Vector version: α_{111}, α_{112}, α_{123}
 This is full SP - 2nd order - scalar variable, scalar parameter

2. Background: Laplace, SP, p^*, r^*, $p(r) = \Phi(r^*)$ Full control (3rd) inference procedure

$r = s - \varphi - \alpha (\varphi^2 + \varphi + \frac{s^2}{2}) / 6n^{1/2}$
$q = s - \varphi - \alpha \varphi s / 2n^{1/2}$
$\hat{\varphi} = s - \alpha s / 2n^{1/2}$

Parameterization in variance:
$q e^{c q y} \leftarrow e^{-q y / \theta} \leftarrow$
MLE departure re can pan \Rightarrow generalizes widely (compare TEM)

3. Bartlett
 Reduced for s after centering
 $f(s, q) = \exp\{q^2 s + l(q)\} h(s)$, $d_s \overset{\text{EM}}{\sim}$ SP $[\text{flexible}]$
\[\theta = (\psi, \lambda) \]

\[\varphi \sim \cdots \varphi \]

Describe

1st para no R = \text{SLR} = \pm \left[\frac{1}{2} (\hat{e}^2 - \bar{e}^2) \right]^{1/2} < \]

\[\text{Scalar } \gamma \]

\[\hat{e} = l(\theta) \]

\[\bar{e} = l(\bar{\theta}) \]

\[\delta = \arg \max l(\theta) \]

\[\gamma(\theta) = \gamma_0 \]

\[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \]

Lin par cp EM

Important Simplicity

\[\gamma_0 \approx \gamma_0 \]

Possible \(\varphi \) value when \(\gamma = \gamma_0 \)

\[\hat{\varphi} = \varphi(\hat{\theta}) \]

\[\varphi \left(\varphi \right) = \varphi_0 \]

Vec

Need a scalar version \(\gamma \)

Orthogonal parameters

- Obs info Current
- Exp info Origin

Can var

\[\cdots \]
\[\Theta = (\psi, \lambda) \]

1st para in no. \(\lambda = \frac{1}{2} \left(\hat{L} - \tilde{L} \right) \frac{1}{2} \]

\[n^* = n - \lambda' \log \% \]

\[\text{Dev} \lambda < \lambda_0 \Rightarrow \text{plug in sign}(\hat{y} - y_0) \]

Scalar \(\gamma \)

\[\hat{\gamma} = \gamma(\hat{\theta}) \cap \gamma = \gamma(\theta) \]

\[\delta = \arg \max \gamma(\theta) \]

\[\gamma(\theta) = \gamma_0 \]

Orthogonal parameters
- Obs info current in var
- Exp info orig var

Possible \(\phi \) value when \(\gamma = \gamma_0 \)

\[\phi = \phi_0 \]

Can var

Can var
Parameter $\mu(\theta)$ of interest

got an estimate $\hat{\mu}$ for μ in lieu of sq.

Hyp: $\mu = \mu_0$

Assess $\mu(\theta)$: cf μ_0

Bootstrap $\hat{\mu}$: Non-Param

You resample your observed errors and thus get new (BS) sample

Calc. Departure measure \times quen

Do nS times $3 \times 10^6 \Rightarrow 10,000$

Obs μ of BS rep's. BS value

Need LS, MLE, other quen

Convert to Stat term $\# p$ value?

Not p value $U(\theta, \hat{\mu})$?

Accuracy < Right measure?

Conclude a manic.

Departure $\hat{\mu} - \mu_0$:

1st μ

Stat mean of Dep

$G = \frac{[x_\mu - \mu_0]^2}{n}$

Stat Mean

1st μ

$\bar{x} = \frac{1}{n}$

Stat Mean

1st μ

$G = \frac{[x_\mu - \mu_0]^2}{n}$

Stat Mean

1st μ

$\bar{x} = \frac{1}{n}$

Stat Mean

1st μ

$G = \frac{[x_\mu - \mu_0]^2}{n}$

Stat Mean

1st μ

$\bar{x} = \frac{1}{n}$

Stat Mean

1st μ

$G = \frac{[x_\mu - \mu_0]^2}{n}$

Stat Mean

1st μ

$\bar{x} = \frac{1}{n}$

Stat Mean

1st μ

$G = \frac{[x_\mu - \mu_0]^2}{n}$

Stat Mean

1st μ

$\bar{x} = \frac{1}{n}$

Stat Mean

1st μ

$G = \frac{[x_\mu - \mu_0]^2}{n}$

Stat Mean

1st μ

$\bar{x} = \frac{1}{n}$

Stat Mean

1st μ

$G = \frac{[x_\mu - \mu_0]^2}{n}$

Stat Mean

1st μ

$\bar{x} = \frac{1}{n}$

Stat Mean

1st μ

$G = \frac{[x_\mu - \mu_0]^2}{n}$

Stat Mean

1st μ

$\bar{x} = \frac{1}{n}$

Stat Mean

1st μ

$G = \frac{[x_\mu - \mu_0]^2}{n}$

Stat Mean

1st μ

$\bar{x} = \frac{1}{n}$

Stat Mean

1st μ

$G = \frac{[x_\mu - \mu_0]^2}{n}$

Stat Mean

1st μ

$\bar{x} = \frac{1}{n}$

Stat Mean

1st μ

$G = \frac{[x_\mu - \mu_0]^2}{n}$

Stat Mean

1st μ

$\bar{x} = \frac{1}{n}$

Stat Mean

1st μ

$G = \frac{[x_\mu - \mu_0]^2}{n}$

Stat Mean

1st μ

$\bar{x} = \frac{1}{n}$

Stat Mean

1st μ

$G = \frac{[x_\mu - \mu_0]^2}{n}$

Stat Mean

1st μ

$\bar{x} = \frac{1}{n}$

Stat Mean

1st μ

$G = \frac{[x_\mu - \mu_0]^2}{n}$

Stat Mean

1st μ

$\bar{x} = \frac{1}{n}$

Stat Mean

1st μ

$G = \frac{[x_\mu - \mu_0]^2}{n}$

Stat Mean

1st μ

$\bar{x} = \frac{1}{n}$

Stat Mean

1st μ

$G = \frac{[x_\mu - \mu_0]^2}{n}$

Stat Mean

1st μ

$\bar{x} = \frac{1}{n}$

Stat Mean

1st μ

$G = \frac{[x_\mu - \mu_0]^2}{n}$

Stat Mean

1st μ

$\bar{x} = \frac{1}{n}$

Stat Mean

1st μ

$G = \frac{[x_\mu - \mu_0]^2}{n}$

Stat Mean

1st μ

$\bar{x} = \frac{1}{n}$

Stat Mean

1st μ

$G = \frac{[x_\mu - \mu_0]^2}{n}$

Stat Mean

1st μ

$\bar{x} = \frac{1}{n}$

Stat Mean

1st μ

$G = \frac{[x_\mu - \mu_0]^2}{n}$

Stat Mean

1st μ

$\bar{x} = \frac{1}{n}$

Stat Mean

1st μ

$G = \frac{[x_\mu - \mu_0]^2}{n}$

Stat Mean

1st μ

$\bar{x} = \frac{1}{n}$

Stat Mean

1st μ

$G = \frac{[x_\mu - \mu_0]^2}{n}$

Stat Mean

1st μ

$\bar{x} = \frac{1}{n}$

Stat Mean

1st μ
Parameter $4(y) = y_0$
Estimate \hat{y} by $o(b, b)$

Prognostic simplistic, elementary
$y \sim \theta_0$ Past performance

Est θ \uparrow CERN LHC

$\hat{y} - y_0$

$[\hat{y} - y_0]/\theta_0$?

Stat terms p value \downarrow

Tangent BS etc.

$f(s; \phi) = \phi(s - y) \exp\left\{-\frac{3}{6} s^{3} + \frac{3}{6} s^{3/2}\right\} (1 - \frac{3}{6} \frac{1}{s^{1/2}}) \cdot ds$

EM\textdagger

Simple $p = 1$

Skewness is ignored in SLR or in LR

% Importance

[Get $U(0,1)$ Wrong measure

Read: Questions: Answer
G. LR models
S. Kennedy
Research Topic and The tools of Inference: March 8, 2012

1. Null/alternative hypothesis
2. p-value
3. Reporting results

Skewness

\[f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma} \right)^2} \]

1. **Likelihood Ratio Stat**
2. **Empirical**
3. **Log likelihood**

\[\Lambda = L(\theta) - L(\hat{\theta}) \]

- Replace and integrating out "nuance"
- Saddlepoint (EM) and it (gen as models)
- \(\exp \left[-\frac{\hat{\theta}^2}{2\hat{\sigma}^2} + \frac{x^2}{2\hat{\sigma}^2} \right] \)
- \(1 - \alpha \) in LR
- Summarize
- 2nd moment
- What is it?
- BS prior
- Vector
- 2D
- Asymptotic
- Accurate
- EBM
- Q8

Data: Hedges M, Donohue P

- Test: Not Conf! Approximation of Edelman
- Quick
- Just
- Evidence

* burp

CERN - Explorations

- ADT
- "Hedeb"
Why? 8

Delay on GLH

260 Line-End

Delay in Slewing

N(\text{phi})

Real Invariant 2

Tell about

N/y, z

Delay in Slewing

G/M = Gain block = \text{Xp}

Inverse of them

Identity

Inverse of them

Scalar and normal for Xp

G/M

Log e

Least: \log_2 \frac{1}{1-p}

Continued

Identity

Log e

Least: \log_2 \frac{1}{1-p}

Continued
What is nice is that we know if $\phi \leftarrow \text{True}$ or False, we can use the confidence region. Given the confidence region, what is $P(\theta | y)$? How is $P(y | \theta, x)$? Could there be a connection? We could come up with all this. How does $P(\theta | y)$ change as y changes? How well does $P(\theta | y)$ change as y changes?

$P_{\theta}(y) = \exp \{ p(y | \theta) - \phi_0 \}$
$$p(y; \theta) = F(y; \theta)$$

Thoughts

Accept / Reject

Newman-Pearson (More Later)

$$\text{Pr}u = \{y_1, \ldots, y_n\}$$

Example:

$$f(y_1, y_2; \phi_1, \phi_2) = \exp\left[\phi_1 y_1 + \phi_2 y_2 - K(y_1, y_2)\right] / \gamma(0_1, 0_2).$$

$$= \frac{e^{\phi_1 y_1}}{2\pi} \cdot \frac{e^{\phi_2 y_2}}{2\pi} \cdot \frac{1}{\gamma(0_1, 0_2)^{1/2}} .$$

Integrated from a MSS $\{y_1, y_2\}$

$$S'F(3)$$

A lot of nice properties

Parameters: $\phi = (\beta_1, \ldots, \beta_n)$

Model in the MSS (Traditional)

$$N(\mu, \sigma^2) \sim N(X\beta, \sigma^2)$$

Few more cases

Generalized

Do??
GLM \[\exp\{ (x_\beta)'s + k(x_\beta) \} R(s) \]

\[
\begin{align*}
y_1 \sim & \chi_1 \beta_1 \\
y_n \sim & \chi_n \beta_n \\
\text{Interest in } \beta_n \text{ and Interest in } x
\end{align*}
\]

Interest in x: Whole story (!) is on Line/Slice L / 3rd

Linear x

Background: Neyman-Pearson fight Fisher
Test of Hyp (composite) is nuisance parameter

Exterior models; Completeness.

EM \[\exp\{ x_\beta' + z_\beta - k(x, \beta) \} R(\beta, t) \]

Test \[x = x^0 \]

UMP similar which happen to be free

\[\text{procedure } \beta \text{ nuisance parameters} \]

260 answer Lin Par
4 412.12 18

Diagram:

\[\phi = \frac{\phi(\hat{\beta} \epsilon)}{\phi(\epsilon)} \]

General \[\phi \rightarrow \beta \]

\[x = \hat{\beta} \epsilon \]

Lehne & Romano
Model: \(f(s_1, s_2; \varphi_1, \varphi_2) = e^{s_1 \varphi_1 + s_2 \varphi_2 - K(s_1, s_2)} \frac{h(s_1, s_2)}{h(s_1, s_2)} \) via SP. \(\varphi_1 = 4 \), \(\varphi_2 = 2 \)

Q Distn of \(s_1 | s_2 \) is just \(s_2 \) section of model, \(f(s_1 | s_2) = e^{s_1 \varphi_1} h(s_1, s_2) \times \text{Norm} \)

No \(\psi_2 \) present! No nuisance

Exptl model: Can int. param \(\psi \)

\(f = e^{\psi s_1 + \psi t + k(s_1)} h(s_1, t) \)

\(t = t^* \) section. No new information.

Next day: Check 260: Be prepared.
More on the "Core": Exponential Models

Mainstream reference: Neyman-Pearson 1933

Lehmann & Romano 2005 § 4.4

UMPU & UMP

Current directions!

Q: Unbiased: similar Talk

Example

** f(s, t; y, λ) = d t

Easy to analyze

= \exp \left[\frac{y \lambda + \lambda s}{\text{pdf}} \right] h(0, t) dt

= \exp \left[\frac{\lambda (y \lambda + \lambda s) / 2}{\text{pdf}} \right] \exp \left[\frac{\lambda (0, t)}{\text{pdf}} \right]

Interest in \(y, t \) ?

\[\Delta t = t^0 \] gives UMPU/UMP

But: is there more? L + R

\[\Delta t = t^0 \] depends only on \(y \) No nuisance! No \(\Lambda \)!

Note: power

Let \(X \) vary: Find how interest in \(\Lambda \) is measured
What is xxx? xxx: Unb; xxx is similar

Ortho parameters

Note: Nuisance parameters are occasionally difficult; convenience is arbitrary.

(a) Helpful: \(I(y, x) = E\{ l(x, y); y, x \} \)

If \(\text{cov} = 0 \) at some \(y \); then mechanics can be easier.

(b) \(\uparrow (y, x) \) with \(\text{cov} = 0 \)

Fundamental

Parameter \(y \) and \(x \); \(y \) is interest

Nuis \(\mathcal{N} \) \(y \) \(y' \) \(y'' \)

Linear here on \(\Phi \) space

\(\Phi \) space: Can par. \(y \) can par.

Linear nuis

Linear nuis

\(\Phi \rightarrow \) desc.

\(\Phi \rightarrow \) desc.

Nuisance parameter: \(\mathcal{N} (\mu, \sigma^2) \)

\(\mathcal{N} (\mu_0, \hat{\sigma}^2) \)

\(\mathcal{N} (\frac{\mu}{\sigma^2}, \frac{1}{\sigma^2}) \)
Two versions; each important. Tell different things.

\[f(s^0, \lambda) = \exp \left\{ \frac{\lambda^0}{\Delta_0} \right\} h(s^0, \lambda) \]

\[f(s^0, \lambda) = \exp \left\{ \frac{\lambda^0}{\Delta_0} \right\} h(s^0, \lambda) \]

Normal only if

Norm constant

What

\[f(y, x) = \frac{e^{-\frac{(y-x)^2}{2}}}{\sqrt{2\pi} \sigma^2} \int_{-\infty}^{\infty} e^{-\frac{(y-x)^2}{2\sigma^2}} dy \]
$$f = \exp \left[\frac{\lambda(x, y) + \lambda(t) + \lambda(z)}{2} \right] k(x, t) \text{ as } t \to 0$$

$$= \exp \left[- \frac{\lambda^2}{2} = k = \frac{\lambda}{2} \right] \text{ as } t \to 0$$

GO: $\lambda(t) \text{ i.e. } \lambda(t) \to 0$,

$\lambda(t) \text{ is free}$

So space \rightarrow **φ space**

Linked by $\varphi + \lambda t$
\[f = \exp \left\{ \frac{1}{2} \left(\mu(t, \lambda) + \lambda(t, \lambda) \right) \right\} \rho(\theta, t) \, d\mu \]

\[\rho(\theta, t) = \exp \left\{ -\frac{\theta^2}{2} - \theta \right\} \, d\mu \]

Go: \(\alpha(t) \) i.e., \(\alpha(t^0) \)

\[\alpha(t^0) = c \exp \left\{ -\frac{\lambda(t^0)}{2} \right\} \int_{\mathbb{R}^n} \rho(\theta, t) \, d\mu \]

\[\hat{\lambda} = \text{free of } \lambda \]

\[\hat{\lambda} = \frac{\lambda(t^0) + 2\lambda(t)}{2} - \lambda(t) \]

\[\hat{\lambda}(t^0; \lambda, t) = \hat{\lambda}(t^0; \lambda) \]

\[\hat{\lambda}(t^0; \lambda, t) = \hat{\lambda}(t^0; \lambda) + 0 \]

\[\hat{\lambda}(t^0; \lambda, t) = \hat{\lambda}(t^0; \lambda) + 0 \]

For constant/free of \(\lambda \) \(\Rightarrow \hat{\lambda} \]

Use \(\lambda = \hat{\lambda}(t) \)

Exponential model

Tied to notationally simplified

\[\hat{\lambda} = \text{fn of } Y \& t \]

\[\hat{\lambda} = \text{constant along } L \]

for each \(Y \) value

\[\int \hat{\lambda}(Y, \eta; t, \theta) = \int \hat{\lambda}(Y, \eta) \]

\[\int \lambda(Y, \eta; t, \theta) = \int \lambda(Y, \eta) \]
For (2,2) Exp (full) "L_0(y) = \text{Full} ; \theta \rightarrow \hat{\theta}_y"; profile of \(y \) along (widely used/widely abused: Good Bad)

\[
\ell(y; \hat{\theta}_y; s, t) = \ell(y, \hat{\theta}_y; s, t) = \ell(y, \hat{\theta}; s, t)
\]

\[\frac{\Delta^2}{2} = \ell(y, \hat{\theta}; s, t^0) - \ell(y, \theta; s, t^0) = \ell(y, \hat{\theta}; s, t^0) - \ell(y, \hat{\theta}_0; s, t^0) = LR \text{ for testing } \theta_0 \text{ different from } \theta_0.
\]

\[\ell(y, \theta; s) - \ell(y, \hat{\theta}_0; s) \geq 2 \frac{\Delta^2}{2} \text{ (modified formula in data)} \]

\[f(y; \theta_0; s) = \frac{e^k}{\sqrt{2\pi}} e^{-\frac{(y - \mu)^2}{2\sigma^2}} \]

\[\ell' = \text{Ram} \]

Used: 2 versions (Exact & SP); Selected to get \(s|t^0 \); Use SP version one down

NB Exp full model \(s|y = \hat{\theta} : \text{dim } \hat{\theta} = \text{dim } y - d \): 2nd Interest in \(y \) (linear) Get

Immediate SP Inverse of profile likelihood for Interest \(y \) (linear) SP version

Interest in \(y \) = SP at nuisance

Example 260
Summary

\[f = \exp \left\{ \ell(\theta, x) + \lambda x + \lambda^T \right\} h(0, t) \cdot \text{do}\
\]

Interest in Linear vs Latin in Curved \(\gamma \)

Expl: Weibull general!

Any model; 2nd: Fan EM

\[f(A_{10}) = \frac{e^{\frac{1}{2}}}{\sqrt{2\pi}} e^{-\frac{1}{2} \| A_{10} - \mu \|^2} I_{[\mu]} I_{\left(\frac{1}{2} \right)} \]

Fill 3rd order

Leh Ram approx

death (not in literature)

\[\text{Proof} \rightarrow 260 \]

\[\text{Voluntary} \]

10

11

12

Same as #

Both Condit & Marginal
4. \(f(A; \theta) = \mathcal{O}(A - \theta) \exp(-x_0^2/6) + x_0^2/6 \) for \(1 - \alpha \leq x_0 \leq \alpha \).

3. Same for weak linear \(y = \beta_0 \) line through data.

2. On \(\theta \to A \) for \(\theta^0 \to 0 \) to \(\theta^0 \to \infty \) one-one mapping.

1. For a linear function \(y = \beta_0 \) through data \(\beta = \beta_0 + \delta \beta \).

\[\text{log model of } (3n) \]

\[E_{11} c = 0 \Rightarrow \text{fixed} \]

\[E_{21} c = 0 \Rightarrow \text{fixed} \]

\[\text{log model of } (2n) \]

\[E_{11} c = 0 \Rightarrow \text{fixed} \]

\[E_{12} c = 0 \Rightarrow \text{fixed} \]

\[E_{21} c = 0 \Rightarrow \text{fixed} \]

\[\text{log model of } (2n) \]

\[E_{11} c = 0 \Rightarrow \text{fixed} \]

\[E_{12} c = 0 \Rightarrow \text{fixed} \]

\[E_{21} c = 0 \Rightarrow \text{fixed} \]
1. **Exponential Model**
 \[f(\theta; \phi) \]
 Test scalar \(\theta \) against \(\chi^2 \)
 Use control model

 Vector \(\Theta; \) Test a commercial (vector) parameter
 \[f(\theta_1, \theta_2, \theta_3; \phi_1, \phi_2, \phi_3) \]
 \[\text{dim } 3 \]

 \[H_0: \chi_1 = \chi_{10} \]
 \[\chi_{x_2} = \chi_{20} \]

 Ex: Cont Tables: Independents of rows & columns

2. **Generalize:**
 Exp Model
 (Next week)

3. **Generalize: General model**
 Case \(\text{dim } \chi = 1 \)
 Similar correspondence
 Case \(\text{dim } \chi = 0 \)
 Define sample space dist.

Easy

Easy theory

Int

\[\text{dim } \chi = 2 \]
\[\text{dim } \chi = 1 \]
\[p - d \]

Bayesian\# freq calibration
\[N m \sigma^2 \]

\[\frac{1}{\sigma^2} v \]

Not \(\mu \)

\[\frac{\mu}{\sigma^2} v \]

Not \(\sigma \)

Explain

Int. pan

Nuis pos (mult; ortho)

Locn \(\Rightarrow \) **Bus**

Impact

Linear

Curved

Who cares

Accuracy

N easy (not a good role model)

\[mle \]

\[\hat{\theta} \]

\[\hat{\theta} = \hat{\beta} \]

260, 265

But for Bayesian theory, \(\mu, \sigma \) are linear.

Location linears

Difficult

Exple linearity: N \& P 1930s; Efron (definition)

Phys apart

Impact

With money

Thrust more

Stat issue

GLM

\[\hat{\beta} \]

\[\hat{\theta} \]

\[\text{curve?} \]

Theory

BS, Lik (profile is bad)

NSW, \(\text{3000; literature} \)

[You should know]
\[\text{lin pan } \frac{1}{\sigma^2} v \rightarrow \text{N}(0,0) \]

\[\text{int pan } \frac{1}{\sigma^2} v \rightarrow \text{N}(0,0) \]

Explained

But for Bayesian- Frequentist \(\mu, \sigma \) are linear

Location linearity: Difficult

Example linearity: \(N \sim P \text{1980s; Efron (definitive)} \)

Locn \(\Rightarrow \text{Bush} \)

Impact

N easy (not a good role model)

\[\text{mle } \hat{\Theta}_2 = \hat{\theta}_4 \]

260, 265.