
The logic; Neyman diagram: final validation?

\[
\begin{align*}
\hat{\beta}_n & = \beta_n + t_{2.5\%} \sqrt{C_{na}} \Delta E \\
\hat{\beta}_n & = \beta_n + t_{2.5\%} \sqrt{\text{C}_{na}} \Delta E \\
t^2 & = \frac{SS_a - SS_{n-1}}{SSR/(n-n)} = F \\
\text{Assume} & \text{ for } Mon
\end{align*}
\]

The logic: Neyman diagram: final validation. §10.5 p 579

Procedure:

(a) For each \(\theta \), let \(A(\theta) \) have prob \(1 - \alpha \) for that \(\theta \)

\[A(\theta) \text{ = acceptance} \]

\[P(y \in A(\theta); \theta) = 1 - \alpha = \beta \]

(b) On \(S \times \Omega \) let \(A \) be composite set

\[A = \bigcup_{\theta \in \Omega} A(\theta) \times \{ \theta \} = \{ (y, \theta) : y \in A(\theta) \} \]

(c) For each \(y \in S \) let \(C(y) \) be \(y \)-section of \(A \)

\[C(y) = \{ \theta : (y, \theta) \in A \} \]

\[= \{ \theta : y \in A(\theta) \} \]

Then:

\[P(y \in A(\theta); \theta) = 1 - \alpha = P(\theta \in C(y); \theta) \]

Prob that \(C(y) \) contains \(\theta \) is \(\beta \)

(\(\beta \) confidence)
\[P(y \in A(\theta); \theta \in \mathcal{A}) = 1 - \alpha = \beta \approx P(\theta \in C(y); \theta) \]

In practice:

\[\begin{align*}
1_A(y, \theta) & = 1 \quad \text{on } A \\
& = 0 \quad \text{o/w}
\end{align*} \]

Note \(1_A(y, \theta) \) is \(\text{Bern}(\beta) \)

Note It is a pivot (with fixed distr) in \(f(y, \theta) \)

Have data \(y^0 \)

Have (in the background) a way of checking whether a data point \(y^0 \) is acceptable via some criterion \((\text{Re } \beta) \) 95%.

Bundle acceptable \(\Rightarrow C(y^0) \)

Only need for \(y = y^0 \)

Need \(\beta \)-criterion
Simple Ex $\mu \sim N(\theta, 2.25)$

Want Conf region ... need logic

Conf lower bound!

Normal: easier

Have $\beta = 95%$

$$A(\theta) = (\theta - 1.64 \times 1.5, \infty)$$

SD = 1.5

-1.64 is 95% for $N(\theta, 1)$

$\theta - 1.64 \leq \theta_0$

Took acc. region in wrong dirn.

Hep CERN LHC

Data: Poisson (θ)

Know $\theta \geq 0$ background

Wander: $\theta > \theta_0$

Papers

Sineva: Nobel

2-pred Conf
Lesson: Conf. Bds are nonstandard.

Important:

a) Get $A(\theta)$ with 95%:

$$A(\theta) = (-\infty, \theta + 2.46)$$

b) Composite

$$A = \{ A(\theta) \times \{ \theta \} \}$$

c) y section $C(y)$ from A.

Reminder: HEPs needed a 99% conf. lower bound.

Ponder:
An example to ponder

\[y \sim U(\theta \pm 1) \]

Examine \((y_1, y_2) \mid \theta \sim U(\theta \pm 1)\)

More

What would you do?

\[\frac{1}{2f} \]

\(\Theta - 1 \quad \Theta \quad \Theta + 1 \)

\(\text{Unif on } [\theta \pm 1]^2 \)

\((\Theta - 1, \Theta + 1)^2 \) Circles!